204 research outputs found

    Therblig-embedded value stream mapping method for lean energy machining

    Get PDF
    To improve energy efficiency, extensive studies have focused on the cutting parameters optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during machining and this is a promising way to save energy through optimizing NCA without changing the cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By implementing the FSM, time and energy efficiencies can be improved without decreasing the machining quality, which is consistent with the goal of lean energy machining. The method is validated by a machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of the value-added activities is improved by 8.12% , and the energy efficiency of value-added activities and Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of NCA, to support designers to design high energy efficiency machining processes during process planning

    Study on the Transit Network Evaluation Method Based on the Transit Ridership Model

    Get PDF
    AbstractTraditional four-step travel forecasting models are usually used to predict changes in car travel patterns and to evaluate the road transportation system. The application is unsatisfactory when they are used to evaluate the transit transportation system. Based on the transit origin-destination (OD) adjustment, this paper proposes a framework on future transit network evaluations, where the transit ridership model and OD difference method are simultaneously used. The proposed method formulates the relationship between transit ridership and zonal population, employment, transit service level, and so on. In addition, the difference between transit counts and estimates for base year are considered in the development of the transit OD for future year. It is expected to perform better than conventional models in terms of transit network evolutions. The validation of the proposed method is tested in Fuzhou City Transit Development Project

    Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption

    Get PDF
    This research was funded by the National Natural Science Fund (grant nos. 41830427, 41602170 and 41772160), the National Major Research Program for Science and Technology of China (grant no. 2016ZX05043-001), the Key Research and DevelopmentProjects of the Xinjiang Uygur Autonomous Region (grant no. 2017B03019-01) and the Research Program for Excellent Doctoral Dissertation Supervisor of Beijing (grant no. YB20101141501).Peer reviewedPostprin

    The Genetic Mechanism of Inertinite in the Middle Jurassic Inertinite-Rich Coal Seams of the Southern Ordos Basin

    Get PDF
    Inertinite is an important type of organic maceral in coal deposits, andalso an important geological information carrier of coal forming environments. In the southern section of the Ordos Basin, the No. 4 inertinite-richcoal seam of the Middle Jurassic Yan’an Formation in the Binchang Coalfield was selected as an example to study the genetic mechanism of theinertinite. In this study, the results obtained from experimental tests ofcoal rock, including principal and trace elements, stable carbon isotopes,scanning electron microscopy, inertinite reflectance, sporopollen andfree radical retorting methods, were analyzed. Then, the findings werecombined with the previous understanding of the oxygen content in theatmosphere and ground fire characteristics, in order to discuss the genesismechanism of inertinite in the No. 4 coal seam. The obtained researchresults were as follows: (1) During the coal forming period of the No. 4coal seam, the overall climate had been relatively dry. There were fourrelatively dry-wet climate cycles in the No.4 coal seam, which werecontrolled by the eccentricity astronomical period. The inertinite contentwere relatively high during the dry periods; (2) The temperature rangesuitable for microorganism activities during the oxidation processes wasbetween 0 and 80℃ . The simulation results of the free radical concentrations showed that the maximum temperature of fusain in the No. 4 coalseam during the process of coalification had not exceeded 300℃ , whichwas significantly higher than the temperature range of microorganismactivities. Therefore, these were not conducive to the activities of microorganism and formation of inertinite during the coal-forming period;(3) The genesis temperature of the inertinite in the No. 4 coal seam wascalculated according to the reflectance of the inertinite, which was lowerthan 400 ℃ . This result supported the cause of wildfire of the inertiniteand reflected that the type of wildfire was mainly ground fire, along withpartially surface fire. Moreover, the paleogeographic location, climaticconditions, atmospheric oxygen concentration, etc. of the study areashowed that the conditions for wildfire events were in fact available; (4)There were dense and scattered fusinite observed in the No. 4 coal seam,and the thickness of cell walls were found to differ. It was speculated thatthis was related to the type of wildfire, combustion temperatures, combustion timeframes, and different initial conditions of the burned objectsduring the coal forming periods

    An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles

    Get PDF
    Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise

    Uformer: A Unet based dilated complex & real dual-path conformer network for simultaneous speech enhancement and dereverberation

    Full text link
    Complex spectrum and magnitude are considered as two major features of speech enhancement and dereverberation. Traditional approaches always treat these two features separately, ignoring their underlying relationship. In this paper, we propose Uformer, a Unet based dilated complex & real dual-path conformer network in both complex and magnitude domain for simultaneous speech enhancement and dereverberation. We exploit time attention (TA) and dilated convolution (DC) to leverage local and global contextual information and frequency attention (FA) to model dimensional information. These three sub-modules contained in the proposed dilated complex & real dual-path conformer module effectively improve the speech enhancement and dereverberation performance. Furthermore, hybrid encoder and decoder are adopted to simultaneously model the complex spectrum and magnitude and promote the information interaction between two domains. Encoder decoder attention is also applied to enhance the interaction between encoder and decoder. Our experimental results outperform all SOTA time and complex domain models objectively and subjectively. Specifically, Uformer reaches 3.6032 DNSMOS on the blind test set of Interspeech 2021 DNS Challenge, which outperforms all top-performed models. We also carry out ablation experiments to tease apart all proposed sub-modules that are most important.Comment: Accepted by ICASSP 202

    Influence of external heat sources on volumetric thermal errors of precision machine tools

    Get PDF
    Volumetric accuracy is susceptible to thermal gradient caused by internal heat source (IHS) and external heat source (EHS). A temperature-structure multi-step calculation method is presented to investigate the influences of EHSs on volumetric thermal errors of precision machine tools. The temperature and structure of the machine tool are simulated first, and then, the volumetric thermal errors are calculated using multi-body theory method. Simulations are completed to study the effects of different EHSs on a machine tool, and series of validating experiments are carried out to verify the modeling method. The test results in specific position and working condition revealed that EHSs contribute 53, 21, and 68% of thermal deviations in X, Y, and Z directions individually. It is illustrated that the EHS is an important factor affecting the volumetric accuracy of precision machine tools. The methods provided in this paper are valuable for machine tool designers to evaluate the EHS effects on volumetric thermal errors during designing process; furthermore, some insulating measures are suggested to improve the accuracy and accuracy stability of precision machine tools by reducing the EHS influences

    Rodent hole detection in a typical steppe ecosystem using UAS and deep learning

    Get PDF
    IntroductionRodent outbreak is the main biological disaster in grassland ecosystems. Traditional rodent damage monitoring approaches mainly depend on costly field surveys, e.g., rodent trapping or hole counting. Integrating an unmanned aircraft system (UAS) image acquisition platform and deep learning (DL) provides a great opportunity to realize efficient large-scale rodent damage monitoring and early-stage diagnosis. As the major rodent species in Inner Mongolia, Brandt’s voles (BV) (Lasiopodomys brandtii) have markedly small holes, which are difficult to identify regarding various seasonal noises in this typical steppe ecosystem.MethodsIn this study, we proposed a novel UAS-DL-based framework for BV hole detection in two representative seasons. We also established the first bi-seasonal UAS image datasets for rodent hole detection. Three two-stage (Faster R-CNN, R-FCN, and Cascade R-CNN) and three one-stage (SSD, RetinaNet, and YOLOv4) object detection DL models were investigated from three perspectives: accuracy, running speed, and generalizability.ResultsExperimental results revealed that: 1) Faster R-CNN and YOLOv4 are the most accurate models; 2) SSD and YOLOv4 are the fastest; 3) Faster R-CNN and YOLOv4 have the most consistent performance across two different seasons.DiscussionThe integration of UAS and DL techniques was demonstrated to utilize automatic, accurate, and efficient BV hole detection in a typical steppe ecosystem. The proposed method has a great potential for large-scale multi-seasonal rodent damage monitoring

    Inhibitors of Phosphatidylinositol 3β€²-Kinases Promote Mitotic Cell Death in HeLa Cells

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer
    • …
    corecore