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Introduction: Rodent outbreak is the main biological disaster in grassland

ecosystems. Traditional rodent damage monitoring approaches mainly depend

on costly field surveys, e.g., rodent trapping or hole counting. Integrating an

unmanned aircraft system (UAS) image acquisition platform and deep learning

(DL) provides a great opportunity to realize efficient large-scale rodent damage

monitoring and early-stage diagnosis. As the major rodent species in Inner

Mongolia, Brandt’s voles (BV) (Lasiopodomys brandtii) have markedly small

holes, which are difficult to identify regarding various seasonal noises in this

typical steppe ecosystem.

Methods: In this study, we proposed a novel UAS-DL-based framework for BV

hole detection in two representative seasons. We also established the first bi-

seasonal UAS image datasets for rodent hole detection. Three two-stage

(Faster R-CNN, R-FCN, and Cascade R-CNN) and three one-stage (SSD,

RetinaNet, and YOLOv4) object detection DL models were investigated from

three perspectives: accuracy, running speed, and generalizability.

Results: Experimental results revealed that: 1) Faster R-CNN and YOLOv4 are

themost accurate models; 2) SSD and YOLOv4 are the fastest; 3) Faster R-CNN

and YOLOv4 have the most consistent performance across two different

seasons.

Discussion: The integration of UAS and DL techniques was demonstrated to

utilize automatic, accurate, and efficient BV hole detection in a typical steppe

ecosystem. The proposed method has a great potential for large-scale multi-

seasonal rodent damage monitoring.

KEYWORDS

rodent monitoring, mouse hole detection, grassland protection, unmanned aircraft

vehicle (UAV), object detection
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1 Introduction

Rodent infestation is one of the main biological hazards that

seriously affect the health of grassland ecosystems (Liu, 2022). In

grassland ecosystems in Mongolian Plateau, Brandt’s vole (BV,

Lasiopodomys brandtii) is the major pest, which is a small,

seasonal breeding rodent species living in social groups and

digging complex burrow systems with up to approximately 5,616

holes/ha in high-density areas (Zhong et al., 1999). Dense BV

holes accelerated erosion and desertification in grasslands,

resulting in mass herbage and forage loss in Inner Mongolia

(Zhang and Wang, 1998). In addition, BV is also the

intermediate host for many severe human infectious diseases

(Brown and Laco, 2015). Accurate and rapid detection of BV

holes is an urgent need to evaluate the rodent population density

for better ecosystem and human health protection.

Traditionally, grassland rodent hole detection mainly relied

on field surveys. Field surveys can straightforwardly obtain

rodent information but are time-consuming and labor-

intensive (Li et al., 2016a; Li et al., 2016b; Wang et al., 2019).

Recently, UAS, which has a millimeter-level spatial resolution

and can quickly collect multi-scale, multi-temporal images in

real-time, has emerged as a promising alternative for rodent hole

investigation. Nesting traces (burrows, mounds, tunnels, etc.) of

many rodent species, i.e., Yellow Stepped Vole (Eolagurus luteus)

(Xuan et al., 2015), Great Gerbil (Rhombomys optimus) (Ma

et al., 2018a; Ma et al., 2018b) and Plateau Pika (Ochotona

curzoniae) (Guo et al., 2017), were able to be identified through

manual interpretation. Nevertheless, manual interpretation is

still labor-intensive and time-consuming in regard to the large

number of images generated by UAS. To solve this problem,

scholars have tried to apply various man-machine interaction

algorithms to count rodent holes in UAS imagery, such as

maximum likelihood classification (Wen et al., 2018), object-

oriented classification (Zhou et al., 2018; Sun et al., 2019),

support vector machine (SVM) (Heydari et al., 2020), and

Sobel filter (Zhao et al., 2016). All these methods have

limitations in effectiveness and efficiency when compared with

deep convolutional neural networks.

Deep learning (DL) shows great potential in BV hole

detection, benefiting from the application of automatic deep

convolutional feature extraction (LeCun et al., 2015; Mountrakis

et al., 2018; Liu et al., 2020). Recent studies using DL and UAS

images have been widely applied to small object detection, such as

detecting birds (Hong et al., 2019) and mammals in the wild

(Kellenberger et al., 2018; Peng et al., 2020; Jintasuttisak et al.,

2022), identifying weeds (Etienne et al., 2021), counting small

plants (Oh et al., 2020), and extracting vehicles (Xu et al., 2016;

Amato et al., 2019). So far, four previous studies have employed

UAS images and DL in rodent hole detection. Cui et al. (2020)

identified large gerbil holes (6-12 cm in diameter) in desert forests

using You Only Look Once (YOLO)v3 and YOLOv3-tiny. Zhou
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et al. (2021) detected holes of Plateau Pika (Ochotona curzoniae)

with a diameter of 8-12 cm, which is a medium-sized rodent,

using a Mask Region-based Convolutional Neural Network (R-

CNN). Wan et al. (2021) successfully detected grassland rat holes

(unspecified species) using R-CNN and improved Single Shot

MultiBox Detector (SSD). Ezzy et al. (2021) detected Levant voles

burrows (2.5-7.5 cm in diameter) in farmlands and found that

YOLOv3 provided relatively accurate and robust results. Previous

studies explored various algorithms to detect different rodent

holes under various environments. However, no specific one has

focused on small-sized rodent holes, e.g., BV holes (4-6 cm in

diameter), in a complex typical steppe ecosystem.

The following issues are encountered in BV hole detection in

a typical steppe ecosystem. First, the characteristics of BV make

hole detection challenging. BV is small-sized, making them

much more difficult to be detected from UAS images than

other rodent holes. In addition, unlike other rodent species,

e.g., Gerbillinae, BV digs holes in a different way that would not

result in obvious excavated soil around holes. Visual features of

other rodent holes cannot be utilized directly in BV holes.

Furthermore, the typical steppe ecosystem, which is the main

habitat of BV, has many factors that can impede detection.

Animal droppings, hoofprints, and, most importantly, shadows

and shades of grass and rocks make BV holes difficult to visually

identify from images or even in the field. Different occlusion and

illumination conditions at different times and seasons will lead

to various spectral and geometric features of BV holes, thus

requiring a robust detection method for different seasons, which

refers to better generalizability. For example, more lush grass in

summer will result in more occlusion in hole observations than

in winter, thus making the detection more difficult. To sum up,

BV hole detection in a typical steppe ecosystem requires a new

dataset and a suitable detection method that can overcome the

abovementioned issues in different seasons.

On account of the practical problems, this study aims to

develop a specific UAS image dataset and a cost-effective and

robust DL method in Brandt’s voles hole detection in a typical

steppe ecosystem. We collected datasets in two different seasons:

summer and winter, then investigated six DL-based object

detection models, including three two-stage detectors and

three single-stage detectors, to explore their accuracy, speed,

and generalizability in BV hole detection.
2 Study area and data

Study areas (Figure 1) are located in East Uzhumuqin Banner

(45°31′0″ N, 116°58′0″E) in Xilingol League, which is in the

northeastern region of Inner Mongolia in China. Xilingol League

is the main steppe habitat for Brandt’s vole (others are the

Hulunbeir League of China, the Republic of Mongolia, and the

Baikal Lake region of Russia) (Zhong et al., 2007). Rodent
frontiersin.org
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infestation occurs annually in Xilingol League and is associated

with drought and ecological deterioration. In Xilingol Leaure, East

Uzhumuqin Banner is the severely damaged region, with a total of

950 km2 area affected in 2021, where BV is the primary pest.

The experiment was implemented in a typical steppe in East

Uzhumuqin Banner. As shown in Figures 2A, B, environmental

conditions, especially grass conditions, are different between the

two seasons. Images were collected in the same pasture in

summer (September 9th-12th) and winter (November 1st-5th)

in 2020. Both selected seasons have ecological significance.

Brandt’s voles reproduce from March to August. The

population of the species peaks in September (Shi, 2011). In

November, BV holes start clustering for the winter. Most holes

become inactive and filled by soil, stones, grass, and snow, thus

disappearing. The number of BV holes reaches the lowest in

winter and performs as the population baseline for the next year

(Wan et al., 2006). Therefore, detection results in September can

represent the magnitude of the BV disaster of the current year,
Frontiers in Plant Science 03
and detection in November can help to determine the peak

number of rodents in the next year. Images collected in

September and November were used to generate two datasets

(Dataset1 and Dataset2, respectively). Moreover, we combined

these two datasets to generate Dataset3 as a comprehensive

dataset. Detailed information about datasets is listed in Table 1.

Flight and data collection was conducted during the whole

day from 8 am to 5 pm. The UAS utilized in this study to capture

BV hole images was a DJI Inspire 2 equipped with a DJI

Zenmuse X5S professional gimbal RGB camera. A DJI 15mm

Micro Four Thirds lens and an Olympus M.Zuiko 45mm/1.8

lens were used to capture RGB images in summer and winter,

respectively. In preliminary experiments, we explored different

flight heights in the detection. We found that a BV hole can be

recognized when its bounding box covers at least 30*30 pixels.

Therefore, we chose 8m and 15m as the flight heights for the two

UAS devices to ensure sufficient spatial resolution. Also, the

vertical shooting angle was pre-determined for ortho
A B

FIGURE 2

UAS photos captured in summer (A) and winter (B).
A B

C

FIGURE 1

(A) Study area in Inner Mongolia, China. (B) East Uzhumuqin Banner in Xilingol League. (C) The typical steppe where UAS imagery was collected.
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rectification and mosaicking of images. Images captured by the

two lenses have the same size (5280*3956 pixels).
3 Methods

The main method of this study is a supervised object

detection approach (Figure 3). First, UAS images were

collected in two different seasons and preprocessed. Two

seasonal datasets and one combination dataset are generated,

respectively. Next, to determine the optimal DL model in BV’s

hole detection, we trained six representative object detection DL

models, including three one-stage and three two-stage models.

Finally, the performance of the models was assessed and
Frontiers in Plant Science 04
compared. Detailed methods were presented in Sections 3.1

to 3.4.
3.1 Data preprocessing

In this section, raw images captured by UAS were

preprocessed through selection, cropping, and labeling. First,

images that contained BV holes were selected by experts to filter

out invalid data. Then, full scenes of UAS images were cropped

into fixed-size patches for further approach regarding

computing memory limitation. Dataset1 and Dataset2 were

manually cropped into patches with 500*500 pixels and

1000*1000 pixels, respectively. Overlaps between patches were
TABLE 1 Datasets information.

Dataset1 Dataset2 Dataset3

Collection
data

November 1st to 5th September 9th to 12th

The combination of
Dataset1 and Dataset2

UAS
devices

DJI Inspire 2 + DJI Zenmuse X5S professional gimbal camera+DJI
15mm Micro Four Thirds lens

DJI Inspire 2 + DJI Zenmuse X5S professional gimbal
camera+Olympus M.Zuiko 45mm/1.8 lens

Flight
altitude

8 meter 15 meter

Patch size 500*500 1000*1000

Patch
numbers

2587 2218 4805

BV hole
numbers

3412 3279 6691
FIGURE 3

Workflow of this study.
frontiersin.org

https://doi.org/10.3389/fpls.2022.992789
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2022.992789
avoided. Third, we labeled BV holes in the patches in LabelImg

(Tzutalin, 2016), which is an open-source graphical image

annotation tool, by delineating the bounding boxes of BV

holes. Every BV hole sample in patches was selected and

double-checked by experts. A total of 4805 images with 6691

BV holes were manually annotated for the training, validation,

and test datasets. Before training, we implemented data

augmentation to extend the datasets, including random

scaling, random flipping, random cropping, and hue-

saturation-value transformation.
3.2 Model training

For each dataset, patches were randomly split into three

parts: 80% for training, 10% for validation, and 10% for testing.

The training set was used to train the deep learning model; the

validation set was used to validate the adopted improving tactics;

the testing set was used to evaluate the performance of trained

deep learning models.

3.2.1 Deep learning models
We tested six commonly used DL models, which can be

grouped into two categories: two-stage detectors and one-stage

detectors. Two-stage detectors, e.g., Faster R-CNN, Region-

based Fully Convolutional Network (R-FCN), and Cascade R-

CNN, conduct region proposal generation and object

classification using two different networks. Alternatively, one-

stage detectors, e.g., Single Shot MultiBox Detector (SSD),

RetinaNet, and YOLOv4, treat object detection as a simple

regression problem, thus running the above operations only

using one network. Compared with two-stage detectors, one-

stage models usually achieve lower detection accuracy but much

faster speed. To determine an optimal method that can achieve a

balance between accuracy and speed in detecting BV holes from

the UAS images, we investigated three representative models

from each category. The brief descriptions of models are

presented below.

Three two-stage models are Faster R-CNN, R-FCN, and

Cascade R-CNN. Faster R-CNN is a classical region-based deep

detection model proposed in 2015 (Ren et al., 2015). Faster R-

CNN generates feature maps using the deep residual network

ResNet-101, which contains 101 convolutional and pooling

layers, proposed by He et al. (2016). In the first stage, a Region

Proposal Network (RPN) narrows the number of candidate

object locations to a small number (e.g., 1~2k) by filtering out

most background samples. In the second stage, the proposals

from the first stage get features of equal size through Region of

Interest (RoI) pooling and are sent to the classifier. After being

classified into specific classes, the final object detection results

will be provided with more accurate locations via bounding-box

regression. This model employed a fully convolutional network,

which simultaneously predicts object bounds and objectness
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scores at each position. It truly realized end-to-end training by

introducing the basis of Fast R-CNN, which greatly improved

the detection speed and accuracy (Girshick, 2015).

R-FCN is a fast approach in the two-stage approach category

(Dai et al., 2016; Tsang, 2019). R-FCN also adopted ResNet-101

as the feature extractor. An RPN proposes candidate RoIs, which

are then applied on the score maps, using a bank of specialized

convolutional layers as the output. The use of position-sensitive

score maps addressed the dilemma between invariance/variance

on translation. All learnable layers are convolutional and are

computed on the entire image. The architecture of R-FCN

enables nearly cost-free region-wise computation and speeds

up training and inference. It has achieved competitive results

with a significantly faster detection speed than the Faster

R-CNN.

Cascade R-CNN is a multi-stage object detection algorithm

released at the end of 2017 (Cai and Vasconcelos, 2018; Lin et al.,

2014). ResNet-101 is also used as the feature extraction

backbone in this model. Different from other models, in

Cascade R-CNN, increasing thresholds of Intersection over

Union (IoU), which is an indicator to judge the degree of

overlap between predictions and labels, are trained in multiple

cascaded detectors. The cascaded detectors were trained

sequentially, where deeper stages are more sensitive against

close false positives (Razavi et al., 2021). The inference speed

after cascade may be slightly slower but within acceptable limits.

Cascade R-CNN is conceptually straightforward, simple to

implement, and can be combined, in a plug-and-play manner,

with many detector architectures.

Three one-stage models are SSD, RetinaNet, and YOLOv4.

SSD uses a set of predefined boxes of different aspect ratios and

scales to predict the presence of an object in a certain image (Liu

et al., 2016; Soviany and Ionescu, 2018). Particularly, it utilizes

different target sizes to extract feature maps and encapsulates all

computations in a single network. This design makes SSD easy to

train and faster than two-stage models. VGG-16 was employed

in this model for feature extraction.

RetinaNet is a one-stage detector that can achieve

comparable accuracy to some two-stage models by using focal

loss to solve the foreground-background class imbalance

problem (Lin et al., 2017). ResNet-101 is used in feature

extraction. A Feature Pyramid Network (FPN) is proposed to

construct a multi-scale feature pyramid from one single-

resolution input image. RetinaNet is multi-scale, semantically

strong at all scales, and fast to compute.

YOLOv4,the fourth version of YOLO, is a widely used, state-

of-the-art, real-time object detection system (Redmon et al.,

2016; Zou, 2019). YOLOv4 was proposed in 2020, which used

novel CSPDarknet53 as a backbone and added universal

algorithms, e.g., DropBlock Regularization. The Spatial

Pyramid Pooling block was added over the CSPDarknet53 to

increase the receptive field of the backbone features and

separates the most significant context features. Instead of the
frontiersin.org
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FPN used in YOLOv3, PANet was used as the method of

parameter aggregation from different backbone levels for

different detector levels. Benefiting from the novel backbone

and new features, YOLOv4 has enhanced learning capability and

improved detection accuracy while assuring its positioning

speed compared with YOLOv3. It also became easier to train

on a single GPU (Bochkovskiy et al., 2020).

3.2.2 Model hyper-parameter settings
Model hyper-parameters, i.e., learning rate, batch size,

iterations, and epochs, were adjusted during training. All

models are trained with the Stochastic Gradient Descent

(SGD) algorithm, and the optimal values of these hyper-

parameters are listed in Table 2. At the end of the training, the

validation loss reached a convergence state for all six models.

The experiment was implemented on NVIDIA Tesla P100 GPU

with an Inter(R) Xeon(R) Gold 6132 CPU with 16 G RAM. All

the methods were implemented in PyTorch.
3.3 Model evaluation

Nine indicators, including True Positive (TP), False Positive

(FP), True Negative (TN), False Negative (FN) (Table 3), Recall,

Precision, Average Precision (AP), F1-score, Average AP,

Average F1-score, and Frames Per Second (FPS) were utilized

to evaluate the performance of models.

TP is an outcome where the model correctly predicts the

positive class. Alternatively, TN is an outcome where the model

correctly predicts the negative class. FP is an outcome where the

model incorrectly predicts the positive class, and FN is an

outcome where the model incorrectly predicts the negative

class. True or false was determined by the threshold of

intersection over union (IoU). IoU measures the overlap ratio

between the detected object (marked by a bounding box) and the

ground truth (an annotated bounding box). The threshold was

set to 0.5, which means that a detection result is determined as

true when IoU>=0.5.

We use Recall and Precision to evaluate the predictability of

the BV hole detection model. Recall presents the ability to find all

relevant instances in a dataset (Equation 1), and Precision

presents the percentage of the instances which are correctly
Frontiers in Plant Science 06
detected (Equation 2).

Recall =
TP

TP + FN
� 100% (1)

Precision =
TP

TP + FP
� 100%   (2)

AP and F1-score were employed to comprehensively

evaluate the results since Recall and Precision reflect only one

aspect of the model’s performance. AP (Equation 3) is the area

under the curve of Precision and Recall rate, which is an intuitive

evaluation standard for the model accuracy and can be used to

analyze the detection effect of a single category. F1-score

(Equation 4) is the harmonic mean of precision and recall.

AP =o
n

i=1
Precisioni Recalli − Recalli−1ð Þ,  with  Recalli=0 = 0 (3)

F1 − score =
2� Recall � Precision
Recall + Precision

(4)

In addition, the Average AP and Average F1-score are the

arithmetic mean of the APs and F1-scores among prediction

results in all three datasets.

In addition, FPS (Equation 5) is used to assess the model

efficiency. In FPS calculation, 150 patches act as the input of the

trained model to obtain the T (total running time). FPS can be

calculated by Equation 5 (it usually takes more time for the first

picture to load the model, so the time of the first picture is not

counted). Higher FPS indicates higher speed and better

efficiency.

FPS =
149
T

(5)
4 Results

4.1 Results from different models

Six DL object detection models were compared through the

experimental results (Table 4). In terms of accuracy, the accuracies

of the two-stagemodels were higher than those of one-stagemodels,

except YOLOv4. Faster R-CNN achieved the highest accuracy with
TABLE 2 Model hyper-parameters settings.

Models Feature extraction network Batch size Learning rate Iterations Epochs

Faster R-CNN

ResNet-101

64 0.001 50000 1282

R-FCN 64 0.001 200000 5128

Cascade R-CNN 64 0.001 200000 5128

RetinaNet 16 0.001 46875 300

SSD VGG16 32 0.001 120000 3096

YOLOv4 CSPDarknet53 16 0.001 46875 300
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0.905 in Average AP, seconded by YOLOv4 (0.872). RetinaNet had

the lowest Average AP (0.681). Regarding the Average F1-score,

Faster R-CNN also had the highest value, 0.86, followed by R-FCN

(0.853) and YOLO v4 (0.852). SSD had the lowest Average F1-

score, which is 0.662. As shown in Figure 4, Faster R-CNN and

YOLOv4 achieved the best accuracies combining all datasets.

In terms of speed, the running speed of the two-stage models

was significantly slower than that of the one-stage. SSD uses a

shallow VGG-16 network as its backbone and had the fastest

running speed, 29.14 frames/second. YOLOv4 using

CSPDarknet53 follows, which had 10.62 frames/second. The
Frontiers in Plant Science 07
FPS of other models used the ResNet-101 network as backbones

were all below eight frames/second.
4.2 Results from seasonal datasets

We also compared the models’ performance among different

datasets collected in two seasons (Table 5). Generally, all results

from different models and datasets had acceptable accuracy,

most of which had above 65% AP and F1-score. We performed a

t-test for each pair of datasets. Detection results in early winter

(Dataset1) were more accurate than those in summer (Dataset2),

considering their AP and F1-score were significantly different at

the 10% confidence level. In addition, based on the statistical test

results, detection accuracy using Dataset3 was significantly lower

than using Dataset1 and higher than using Dataset2. Among all

models, Faster R-CNN and YOLOv4 were the two best models in

terms of generalizability, regarding their low standard deviation

of AP and F1-score among the three datasets (Figure 5).
TABLE 4 Accurcies and speed of different models.

Categories Models Average AP Average F1-score FPS

Two-stage

Faster R-CNN 0.905 0.861 4.62

R-FCN 0.827 0.853 6.86

Cascade R-CNN 0.814 0.845 2.81

One-stage

SSD 0.800 0.662 29.14

RetinaNet 0.681 0.767 7.17

YOLOv4 0.872 0.852 10.62
frontiersi
FIGURE 4

Detection accuracy of six different Deep-learning (DL) models using three datasets. The red dashed line is the mean (2.448) of the sum of the
Average Precision (AP) of six DL models: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional
Network (R-FCN), Cascade Convolutional Neural Network (Cascade R-CNN), Single Shot MultiBox Detector (SSD), You Only Look Once version
4 (YOLOv4).
TABLE 3 The confusion matrix for the possible outputs.

Actual class Predicted class

Positive Negative

Positive TP FN

Negative FP TN
n.org
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5 Discussion

In this paper, we developed the first Brandt’s voles hole

detection method that can be utilized in a typical steppe

ecosystem using UAS and DL. We established the first BV

hole UAS image dataset, including samples in summer and

winter. Detection results from six popular DL models were

explored and compared. To our knowledge, this is the first

UAS-based hole detection study for the specific species,

Lasiopodomys brandtii. Advantages, findings, and limitations

have been discussed below.
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5.1 Advantages of UAS and DL models

Generally speaking, DL models based on UAS imagery had

satisfactory results in BV hole detection. For example, using the

model of Faster R-CNN and YOLOv4 to detect BV holes in UAS

images, we can achieve a high Average AP, i.e., 0.905 and 0.872,

which is a compelling output. More importantly, the proposed

approach significantly improved the efficiency of the

investigation. UAS-DL-based methods took less time and labor

than traditional field survey methods. Specifically, taking the

0.25hm2 plot (the commonly used size for a manual survey plot)
TABLE 5 The performances of different models using three datasets.

Models Datasets True number Predicted number Precision Recall Ap F1-score

Faster
R-CNN

Dataset1 354 427 0.796 0.961 0.945 0.871

Dataset2 321 346 0.832 0.897 0.884 0.863

Dataset3 646 735 0.799 0.909 0.887 0.850

R-FCN

Dataset1 354 370 0.868 0.907 0.888 0.887

Dataset2 321 329 0.821 0.841 0.786 0.831

Dataset3 646 665 0.829 0.853 0.808 0.841

Cascade R-CNN

Dataset1 354 360 0.883 0.899 0.898 0.891

Dataset2 321 317 0.811 0.807 0.743 0.809

Dataset3 646 651 0.833 0.839 0.801 0.836

SSD

Dataset1 354 305 0.869 0.749 0.880 0.805

Dataset2 321 149 0.832 0.386 0.753 0.527

Dataset3 646 419 0.831 0.539 0.757 0.654

RetinaNet

Dataset1 354 354 0.895 0.895 0.867 0.895

Dataset2 321 183 0.901 0.514 0.512 0.655

Dataset3 646 482 0.881 0.656 0.663 0.752

YOLOv4

Dataset1 354 333 0.913 0.859 0.905 0.885

Dataset2 321 285 0.874 0.776 0.837 0.822

Dataset3 646 548 0.925 0.785 0.874 0.849
fron
FIGURE 5

The standard deviation of Average Precision (AP) and F1-score in three datasets for six Deep-Learning (DL) models: Faster Region-based
Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), Cascade Convolutional Neural Network
(Cascade R-CNN), Single Shot MultiBox Detector (SSD), You Only Look Once version 4 (YOLOv4). The standard deviation measures the
dispersion of accuracy among three datasets.
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FIGURE 6

Test samples of BV hole detection using Deep-Learning (DL) algorithms in UAS images (left: summer samples, right: winter samples). (A) Faster
R-CNN, (B) Cascade R-CNN, (C) R-FCN, (D) SSD, (E) RetinaNet, and (F) YOLOv4. Predicted BV holes are in red circles. Actual holes are pointed
out using red arrows (A).
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as an example, traditional manual methods require five or six

people to spend about 1 hour. Repetitive counting in traditional

methods may lead to a huge margin of error. In addition, human

trampling during the investigation may cause destructive

damage to grasslands. Therefore, it is not suitable for large-

scale and periodic repeated monitoring. In monitoring by UAS,

the aerial photography acquisition requires only one person and

takes about 15 minutes for the same area (0.25hm2), which

greatly improves the survey efficiency without damage. The

running speed of SSD and YOLOv4 can achieve the FPS of

29.14 frames/second and 10.62 frames/second. For example, the

proposed method using YOLOv4 needs only about 10 minutes

for a 0.25hm2 plot to obtain the detection result. To this end, the

proposed framework of UAS and DL models is an effective and

efficient method for identifying BV holes.
5.2 Model comparison and selection

We compared the models from the following three

perspectives: accuracy, running speed, and generalizability.

From the accuracy perspective, as shown in Table 4, Faster

R-CNN and YOLOv4 were the two most accurate models with

the highest average AP (0.904 and 0.872). It also should be noted

that Faster R-CNN had the highest recall (0.961) while its

precision was relatively low (0.796), which indicates that

Faster R-CNN can detect more BV holes but may contain
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more false detections (Figure 6). YOLOv4 had the highest

precision (0.913) and an acceptable recall (0.859).

From the running speed perspective, SSD and YOLOv4, which

used VGG16 and CSPDarknet53 as their feature extraction

networks, were the two fastest models with the highest FPS

(29.14 and 10.62). All other models were used the ResNet-101

network as backbones, which has more parameters, thus required

longer running time. However, SSD was excluded in practical

applications since it had the lowest Average F1-score (0.662).

From the generalizability perspective, we focused on

accuracy stableness, which refers to the variance of accuracy

among different datasets. As mentioned in section 4.2, all models

were performed better in winter than summer (Table 5). The

main reason for this was that grass withers in winter, which leads

to a much clearer view field. Less occlusion from grass in winter

will lead to fewer missing BV holes in the detection.

Additionally, fewer shadows and shades in winter will result in

fewer FP.

Specifically, we discussed the advantages and disadvantages of

each model one by one based their performance. Faster R-CNN

had the highest accuracy considering AP and F1-score but

relatively lower running speed. The RPN used to select

candidate objects in the first stage of the model can utilize

multi-scale feature information that improves performance in

detecting small objects, e.g., BV holes. In contrast, much

detailed information in RPN results in a long running time. In

addition, it could detect the most BV holes among all models but

may contain more false detections because fewer negative classes
TABLE 6 The performance in the generalizability test using different models.

Models Training dataset Testdataset True number Predicted number Preci-sion Recall Ap F1-score

Faster R-CNN
Dataset3 Dataset1 354 411 0.867 0.983 0.977 0.921

Dataset3 Dataset2 321 371 0.841 0.970 0.951 0.901

YOLO-v4
Dataset3 Dataset1 354 328 0.940 0.870 0.937 0.903

Dataset3 Dataset2 321 420 0.662 0.867 0.760 0.750
fron
A B C

FIGURE 7

Noises in detection in a typical steppe ecosystem are pointed out using red arrows. (A) Animal droppings, (B) hoofprints (red arrows) and
shadows of grass (blue arrows), (C) shadows of rock. Actual BV holes are in blue circles.
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FIGURE 8

Examples of False Positive (FP) (red arrows): (A) cow dung, (B) shadows of grass, (C) shadows of rocks (the upper left), and (D) shadows of rocks
(the upper left) and grass (the lower left). Predicted BV holes are in red boxes.
FIGURE 9

Examples of False Negative (FN) (in blue circles). Predicted BV holes are in red boxes.
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were sent to training after random sampling in RPN. R-FCN had

the fastest running speed among two-stage models but a relatively

lower Average AP, which indicates that features of BV holes are

less sensitive to the problem that R-FCN majorly solved, i.e., the

contradiction between translation variance and invariance.

Cascade R-CNN had the lowest running speed thanks to its

cascade architecture, with only 2.81 frames/second. However, its

accuracy did not get satisfactory improvement after the cascade.

The efficiency of the one-stage models was significantly

better than two-stage models. Benefiting from the VGG-16

network, SSD had the fastest running speed, which was more

than ten times faster than Cascade R-CNN. However, the F1-

score of SSD was the lowest, directly caused by the lowest recall

due to the insufficient convolutional layers to extract features.

Although RetinaNet had a higher F1-score than SSD benefiting

from the focal loss function, its Average AP was the lowest

among all models. The reason for this could be that RetinaNet

pays more attention to difficult samples, thus leading to worse

performance in easy and majority samples. YOLOv4 was ranked

second both in accuracy and speed. Its one-stage architecture

and the novel CSPDarknet53 feature extraction network reduced

calculation when maintaining accuracy. In YOLOv4, the

receptive field increases, and the size of the feature map

decreases as the network deepens. Features and locations

become abstract and fuzzy as well. While Faster R-CNN used

FPN to construct a multi-scale feature pyramid for small objects,

YOLOv4 had lower accuracy than Faster R-CNN in BV hole

detection. On the other hand, YOLOv4 had a more balanced

performance on missing BV hole detection and false detection

than Faster R-CNN due to calculating the confidence loss for all

positive and negative samples.

We further explored the generalizability of Faster R-CNN and

YOLOv4 in a supplementary experiment. Specifically, we

employed Dataset3, which is the most comprehensive dataset, as

the training set, and tested the models on single-season datasets

separately, i.e., Dataset1 and Dataset2. Experimental results

showed that when using a more comprehensive training dataset

in Faster R-CNN, the detection accuracy was significantly

improved in both summer and winter (Table 6). Alternatively,

when using YOLOv4, the detection accuracy was improved only

in the winter dataset but decreased in the summer dataset.

Furthermore, the accuracy improvement by Faster R-CNN was

higher than by YOLOv4. To conclude, Faster R-CNN had a more

accurate and consistent performance in two seasons.

In summary, when considering accuracy, Faster R-CNN and

YOLOv4 were the two best models; when considering running

speed, SSD and YOLOv4 were preferred; when considering

generalizability, both Faster R-CNN and YOLOv4 were

achieved acceptable accuracy in two seasons. Therefore, if

taking into account accuracy, speed, and generalizability, the

YOLOv4 was the best choice.
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5.3 Uncertainty and limitations

There were several sources of uncertainty in the

proposed UAS-DL-based BV hole detection method.

First, noises like animal droppings, hoofprints, and

shadows of grass and rocks were frequently appeared

within the UAS images (Figure 7). Most of the falsely

detected BV holes came from the misclassification of

these noises (Figure 8). Second, various shapes and sizes

of BV holes were brought uncertainty and error in the

detection. In the complex wild environment, the shape and

size of rodent holes depend on various factors, e.g.,the size

of the rodents that live in, the rodents’ activity level, and

the erosion degree. The lack of outlier-shaped samples lead

to many FNs (Figure 9).

The limitations of this study are presented as follows.

First, due to the top-view perspective, BV holes occluded by

other objects cannot be detected from UAS. Second, small

target detection still needs to be improved, especially in

complex environments, e.g., typical steppe ecosystems.

More advanced algorithms may improve the accuracy and

con s i s t e n c y o f BV ho l e d e t e c t i o n . B e s i d e s t h e

abovementioned future directions, real-time and large-scale

BV detection studies are essential for better rodent

monitoring. Moreover, spatial distribution and surrounding

environment analysis are worthy of further exploration,

which can provide more valuable advice on rodent disaster

management and grassland protection.
6 Conclusions

A UAS-DL-based BV hole detection framework that can be

used in different seasons was developed in this study. After

comparing different DL models’ accuracy, speed, and

generalizability in bi-seasonal datasets, we suggested an

optimal model, YOLOv4, for BV hole detection in typical

steppe ecosystems. In addition, we established a bi-seasonal

BV hole UAS image dataset. To our knowledge, this is the first

study that employs UAS images in BV hole detection.

Furthermore, the seasonal effect was first considered and

solved in rodent hole detection studies. The suggested model

and dataset have a great potential for large-scale multi-temporal

rodent hole detection and better management by the grassland

ecological protection departments.
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