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Abstract 

Matrix compressibility and pore properties (pore size distribution) of a rank range of coals was 

investigated using mercury intrusion porosimetry (MIP) on coal cores with the pore size 

distribution also being determined using low temperature at 77 K nitrogen adsorption/desorption 

isotherms for crushed samples. The coal matrix compressibility is signif icant when the pressure of 

MIP is from 0.0074-35 MPa. Mathematical models were developed (based on MIP and nitrogen 

adsorption/desorption isotherms) to establish the porosity/pore size distribution relationships with 

matrix compressibility. For coal ranks, the matrix compressibility was between 0.2410
-4
 to 

13.5610
-4 

MPa
-1

, and had a negative exponential relationship with the vitrinite reflectance 

(Ro,m%). Lignites have the maximum matrix compressibility due to their structural open structure 

having limitied compaction during coalification. In addition to the pore structure relationship the 

composition, moisture, and ash yields impacts on compressibility were also examined. 

Inertinite-r ich coals  however had a low matrix compressibility across the rank range, which may 

be due to the interinhibitive relationships between the mesopores, macropores and minerals. The 

wetting action of high moisture (water molecules) weakens the link between the coal particles of 

the lignites and the subbituminous coals, which causes abnormally high compressibility. 

Observations here relate to hydrofracturing or CO2 injection behaviors during enhancing coalbed 

methane (CBM) recovery.  

Keywords : coals; matrix compressibility; mercury intrusion porosimetry; low-temperature 

nitrogen adsorption
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1. Introduction 

The decrease in fluid pressure during coalbed methane (CBM) production results in volume 

changes of both reservoir fluids and coal reservoirs (Liu and Harpalani, 2014). The volumetric 

response to these pressure changes (Palmer and Mansoori, 1998; Pan et al., 2010) and/or stress 

variation (Li et al., 2013) influences CBM production behavior (Clarkson and Qanbari, 2015). 

Thus, during drilling, production or injection of fluids during enhanced CBM production, and/or 

CO2 sequestration there is a dynamic coal response. Unfortunately, volumetric data changes are 

not typically available due to the complexity of coal reservoirs (Liu and Harpalani, 2014), it can 

however be estimated by the matrix compressibility. 

Mercury intrusion porosimetry (MIP) is widely used for determining the pore size distributionof 

porous materials and has applicability to conventional and unconventional reservoirs (e.g., tight 

sand, shales, and coals) (Labani et al., 2013; Lan et al., 2017; Liu et al., 2016; Song et al., 2018). 

However, during the experiment the coal matrix will be compressed and potentially damaged 

(Friesen and Mikula, 1988; Harpalani, 1999; Spitzer, 1981; Suuberg et al., 1995; Toda and Toyoda, 

1972; van Krevelen, 1981). This volume reductions impacts the reservoir permeability and hense 

the CBM production (Meng et al., 2011). The apparent pore volume increase in MIP at >10 MPa 

is due to the coal compressibility (Toda and Toyoda, 1972; Cai et al., 2013; Guo et al., 2014). 

Multiple techniques have established that coal can have a range of pore sizes and a complex pore 

size distribution (Gan et al., 1972) composed of macropores (>50 nm), mesopores (2-50 nm) and 

micropores (<2 nm) by IUPAC (1982). There is a rank (and maceral/lithotype) influence on this 

pore size distribution and hence there is an expectation that the compress extent is rank dependent. 

Coal matrix deformation can be divided into elastic deformation related to mechanical 
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decompression of the solid matrix, and non-elastic swelling induced by adsorption (Liu and 

Harpalani, 2014). As mercury is non-absorbing the non-elastic swelling can be neglected. Both 

experimental and theoretical methods have been developed to understand the compressibility of 

coals (Liu et al., 2015). As the applied mercury pressure increases, synchronous pore filling and 

compression may occur. Thus, determining the matrix compressibility of coals ranks capturing the 

effects of coal compressibility across the pressure range should be examined. Here, we suggest a 

theoretical approach to evaluate the compressibility of a coal rank range and establish the 

interrelationships between coal composition, moistures, ash yields, and pore structure to coal 

matrix compressibility. The distinguishing features of this work include 1) the evaluation of  

compressibility for different rank coals, 2) pore structure assessment using MIP and the N2 

adsorption isotherm at 77 K, and 3) factors affecting the coal matrix compressibility for different 

rank coals. 

2. Methods 

2.1. Coal sampling, and analyses 

Here 39 coal blocks (30×30×30 cm
3
), were selected from seven coal basins capturing: 7 low-rank 

(LRC, 0.49-0.65% Ro,m), 27 medium-rank (MRC, 0.66-1.90% Ro,m) and 5 high-rank coals (HRC, 

2.00-2.95% Ro,m). Maximum vitrinite reflectance (Ro,m) (immersion in oil) and maceral 

composition were conducted with a microscope photometer (MPV-III, Leitz Company of 

Germany) following the GB/T 6948-1998 at China University of Geosciences at Beijing (CUGB). 

The Ro,m varies from 0.49 to 2.95%, as listed in Table 1. Coal macerals were determined by the 

point counting technique following the scheme of the International Committee of Coal Petrology 

(ICCP, 1998). The coal composition varied, with vitrinite being 11.0-92.0%, inertinite of 0.6-78.8% 
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and a small amount of exinite of 0-18.2%, as well as some minerals (0-19.3%). Ash yields and 

inherent moisture contents were 2.45-28.28 wt% and 1.48-12.10 wt%. Proximate analysis was 

performed following the ASTM D7582-15 procedures (Pillalamarry et al., 2011). Helium 

porosimetry was determined using the routine core analysis methods as previous research (Cai et 

al., 2011). The helium porosity varies from 1.30% to 18.40%, as listed in Table 1. Cylindrical 

cores with diameters of 25 mm and lengths of 50 mm were acquired along the bedding face from 

coal blocks. These cores were used in the MIP experiment with the remaining coal being crushed 

to 60-80 mesh for N2 adsorption/desorption analysis. 

2.2. Mercury intrusion porosimetry and nitrogen adsorption/desorption 

The MIP data was obtained using an Autopore 9420 Instrument (Micrometrics, US) using the coal 

cores. In using this approach to obtain the pore body radius  with the aid of the Kelvin equation 

(Kelvin, 1871), it is necessary to assume: i) a model for the pore shape and ii) that the curvature of 

the meniscus is directly related to the pore width. The pore shape is generally assumed to be either 

cylindrical or slit-shaped (IUPAC, 1982). Here, the coal pore shape is assumed to be cylindrical. 

In the cylindrical case, the meniscus is hemispherical. The MIP analysis was conducted at the Coal 

Reservoir Laboratory of National Engineering Research Center of CBM Development & 

Utilization, China University of Geosciences at Beijing (CUGB), following the SY/T 5346-2005 

standard procedure. Volume injection curves were obtained for each sample at pressure intervals 

of 0.0074-35 MPa, which corresponds to a pore-radius range of approximately 100 to 19 nm. 

Previous work (Busch et al., 2004; Han et al., 2013; Siemons et al., 2003 and Zhang, 2016) 

determined the sample size has no signif icant effect on the pore structure evaluation for the coal 

pore size <100nm. Coal pore structure will slightly differ between size fractions however. For 

instances, the pore volume ranges from ~0.01 to 0.3cm
3
/g at different pore size when the particle 
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size is in the range of 10-3.35mm, 3.35-0.841mm, 0.841-0.25mm, 0.25-0.097mm and less than 

0.097mm. However, there is no clear effect of coal particle size on the pore structure that from 

MIP experiment when the pore size less than 100nm (Zhang, 2016). The MIP curves were 

obtained as shown in Fig. 1. Before MIP analysis, all samples were dried at 75°C for 48 h. The 

low-temperature N2 adsorption/desorption experiment was conducted using a Micromeritics 

ASAP-2000 with an equilibrium time of 6 min, respectively. The N2 adsorption/desorption curves 

were acquired as presented in Fig. 2. The pore volume acquired from N2 adsorption for all samples 

at the intervals of 0-100 nm range from 4.9710
-4

 to 3.2910
-2

cm
3
/g. The pore volumes for 

micropores (<2 nm), mesopores (2-50 nm) and macropores (>50 nm) are shown in Fig. 3. For the 

pore volume acquired using N2 adsorption, there is slight pore volume variation (~0.110
-3
 

-1.110
-3 

cm
3
/g) when coal particle sizes range from 10-3.35mm, 3.35-0.841mm, 0.841-0.25mm, 

0.25-0.097mm to less than 0.097mm (Zhang, 2016). Here, the 60-80 mesh cut (~0.25-0.18mm) 

was used. This particle size has no obvious effect on pore structure evaluation by N2 for the coals 

with pore size less than 100 nm (Zhang, 2016). Therefore, the pores with size of 19-100 nm were 

selected to investigate the matrix compressibility of different rank coals by mercury intrusion 

porosimetry and N2 adsorption. Experimental and data processing procedures are the same as 

presented in our previous work (Cai et al., 2013; Cai et al., 2017). 

2.3. Coal Matrix Compressibility 

Mercury is nonwetting on sedimentary materials including sandstone, carbonates, shale, and coals. 

Mercury overcomes capillary resistance to enter the pores when the mercury pressure is greater 

than or equal to the capillary pressure at the pore throat.  Here, the typical assumption is the 

cylindrical pore shape. Assuming the pores are composed of a variety of cylindrical pores, the 

Wasburn equation (Washburn, 1921) can be used to obtain the pore radius, as shown in Equation 
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(1): 

2 c o s

c

c

P
r

 
 

                                                             

(1) 

where 
c

P  is the pressure (MPa); σ is the surface tension (N/m), set to be 0.48 N/m; θ is the 

wetting contact angle (°), set to be 135°; and 
c

r  is the capillary radius (μm) at the corresponding 

pressure. Therefore, after substituting: 

0 .6 7 9

c

c

P
r

                                                                  (2) 

According to Equation (2), the pore radius can be obtained from MIP data.  

Coal matrix compressibility, if neglecting mercury compressibility, can be defined as (Li et al., 

1999): 

m

m

m

d V
C

V d P
                                                                 (3) 

where 
m

d V / d P  is the volume change of coal matrix as a function of pressure and 
m

V  is the 

coal matrix volume. The Vm is calculated as: 

Vm =
1


 VT                                                                  (4) 

where 𝜌 is the density of coal samples (g/cm
3
) and represents the reciprocal of the total volume 

of the coal sample; VT (cm
3
/g) is BJH (Barrett et al., 1951) pore volume, which represents total 

pore volume of coal samples. The BJH theoretical model was based on the BET multilayer 

adsorption theory and capillary condensation of vapors in the porous material (Barrett et al., 1951). 

The N2 adsorption isotherms were measured for relative pressures ranging from 0.01 to 0.99 to 

obtain pore BET surface area, BJH pore volumes and the pore size distributions.  

Significant compression in coals can be detected with increasing mercury intrusion. For a 
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compressible porous solid, the relationship is: 

m ercu ry p o re co m p a c tio n
V V V                                                     (5) 

where 
m e rc u ry

V  represents the observed increase in mercury volume that comes from pore 

filling
p o r e

V  and solid compression
c o m p a c tio n

V , respectively. 

In this experiment, the pressure is set at 6.80-35.03 MPa, which corresponds to the pressure 

interval of 100 nm-19 nm (Equation 2). Thus, at 6.80-35.03 MPa pressure, the fractures/cleats 

(>100 nm) space have been filled with non-compressible mercury, and thus, it can be assumed to 

be unchangeable with the increasing mercury intrusion pressure during the MIP measurements. 

Meanwhile, the observed mercury volume change is equal to the sum of the coal matrix 

compression volume and the filling volume of the pore size of 19−100 nm. From relationship 

between mercury volumes and pressures, /
m ercury

V P   can be assumed to be a constant, N. 

Therefore, we can approximate using (Cai et al., 2013; Guo et al., 2014; Li et al., 1999): 

1 0 0

1 9
N

n m

p o rec o m p a c tio n n m
VV

P P


 

 


                                                (6) 

Previous research (Mahajan, 1991) has shown that N2 sorption may severely underestimate pore 

numbers (especially small pores) in high-rank. Therefore, here the pore volumes (PV) with pore 

sizes of 19-100 nm are estimated from N2 adsorption/desorption data to avoid this. Constant 

/
m ercu ry

V P   or /
co m p a ctio n

V P   is valid only if the pores included in the sample remain 

unchanged during compression. Assuming /
co m p a ctio n

V P   is independent of pressure, and 

replacing /
m

d V d P  by /
co m p a ctio n

V P  . Combined with Equations (3) and (6), the coal matrix 

compressibility can be acquired: 

1 0 0

1 9
1

N

n m

p o ren m

m

m

V
C

V P

 
  
 
 


                                                 (7) 
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where the coal matrix compressibility has an average of 6.80-35.03 MPa. 

3. Results  

3.1. Coal characteristics 

The 39 coal samples were divided into three coal ranks: low-rank coals (Ro, m<0.65%), 

medium-rank coals (0.65%<Ro, m<1.9%) and high-rank coals (Ro, m>1.9%). These coals vary 

markedly in their maceral and minerals contents, which represent a wide range in composition, as 

shown in Table 1. The volume contents for vitrinite, inertinite and exinite are in the range of 

11-92.04%, 0.6-78.08% and 0-18.2%, respectively. Exinite disappears when the maximum 

vitrinite reflectance is over 1.19%. The mineral volume content varies from 0 to 19.3%. These 

variable macerals and mineral contents will impact gas adsorption and the pore filling minerals, 

(from paleo-fluid f low and mineralization) occlude some pores (Crosdale et al., 1998). Ash yields 

of these coals vary from 2.45-28.28% and moisture contents vary from 0.2-12.1%. Moistures in 

matrix pores have a great impact on not only gas diffusion and flow but also on coal matrix 

compressibility (Pan et al., 2010). The petrophysical analysis shows that the porosities of these 

coals change greatly (1.3-20.8%) as listed in Table 1. These results are comparable to the coals of 

the same ranks based on previous research (Cai et al., 2016). 

3.2. Pore structures from MIP and N2 adsorption/desorption at 77 K 

Based on the MIP curves, different types of pore structures are revealed as shown in Fig. 1. 

Previous research has revealed that coals with high inertinite and high ash yields have greater 

mesoporosity and less microporosity than coals of the same rank with high vitrinite and low ash 

yields (Crosdale et al., 1998; Cai et al., 2013). For LRC samples, the maximum intruded mercury 

volume ranges from 0.005~0.13 cm
3
/g, and the ascending curve normally goes steadily upward, as 

shown in Fig. 1. The steadily ris ing curve may be due to the three peaks of pores in low-rank coals 
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as revealed by our previous research (Cai et al., 2016). For medium-rank coals and high-rank coals, 

the maximum intruded mercury volume are generally lower than 0.09 cm
3
/g, and the ascending 

curve normally goes up sharply. This phenomenon is likely related to the large amount of 

micropores in the medium and high-rank coals. 

Fig. 2 shows the N2 adsorption/desorption curves at 77 K for typical coals of different ranks. The 

Type II reversible isotherms are for all selected samples LRC1, LRC4, MRC8 MRC18, HRC1 and 

HRC4 according to the IUPAC classifications (IUPAC, 1982), which represents unrestricted 

monolayer-multilayer adsorption. The beginning of the nearly linear middle section of the 

isotherm is often taken to indicate the stage at which monolayer coverage is complete and 

multilayer adsorption is about to begin. Hysteresis loops also occur for all selected samples, which 

normally indicate that hysteresis that appears in the multilayer range of physiosorption isotherms 

is usually associated with capillary condensation in mesopores, especially for the priority for 

mesopore volumes (e.g., LRC4, MRC8 and HRC4 in Fig. 3). Hysteresis loops can exhibit variable 

pore shapes. The hysteresis loops that terminate (desorption branch) at a relative pressure of 0.42 

(nitrogen at its boiling point at p/p° 0.42) indicate slit-like/plate-like pores (for MRC18, HRC1 

and HRC4) and ink-bottle pores (for MRC8), which correspond to type H3 loop and approximate 

type H2 loop, respectively (Sing et al., 1985). The type H3 loop is deemed as an aggregate of 

plate- like particles that give rise to slit-shaped pores. The H2 loop may be attributed to the 

difference in N2 condensation and evaporation processes that occur in pores with narrow necks 

and wide bodies (often referred to as ink-bottle pores) and the role of network effects. The LRC1 

and LRC4 belong to the Type H4 loop that is often associated with narrow slit-like pores. 

3.3. Calculated coal matrix compressibility 

Based on the MIP and N2 adsorption/desorption data, the coal matrix compressibility of all 39 coal 
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samples with pore sizes of approximately 19-100 nm were calculated as shown in Table 2. There 

is a clear linear relationship between the mercury volume and pressure for all samples within the 

pressure interval of 6.80-35.03 MPa. Therefore, the values of the constant N that results from the 

slopes of the fitted linear relationships are obtained as presented in Table 2. Then, on the basis of 

Equation 7, the coal matrix compressibility for all samples can be acquired. Before system 

evaluation of coal matrix compressibility, the estimate of the error introduced by experiments, and 

the compressibility value errors at 30 MPa would be lower than 4% and can probably be ignored 

for most purposes. The computed coal matrix compressibility varies greatly with values of 

0.24-13.5610
-4

 MPa
-1

. The coal matrix compressibility values of the LRC, MRC, and HRC coals 

are 1.44-13.2610
-4

 MPa
-1

 with an average of 6.9310
-4 

MPa
-1

, 0.24-13.5610
-4

 MPa
-1

 with an 

average of 3.1210
-4 

MPa
-1

 and 0.25-0.9110
-4

 MPa
-1

 with an average of 0.2510
-4 

MPa
-1

. 

4. Discussion 

4.1. Effects of coal rank on coal matrix compressibility 

Coal matrix compressibility shows a negative exponential relationship as coal rank increases, as 

shown in Fig. 4(a). The coal matrix compressibility values of low-rank coals emerge as a rapid 

decrease from 13.2610
-4 

MPa
-1

 to 1.4410
-4 

MPa
-1 

as coal rank increases from 0.49% to 0.65% 

Ro,m as listed in Table 2. The average coal matrix compressibility for low-rank coals is 6.9310
-4 

MPa
-1

. For medium-rank coals (0.65%-1.9% Ro,m), the coal matrix compressibility decreases 

slowly from 13.5610
-4 

MPa
-1

 to 0.2410
-4 

MPa
-1 

as coal rank increases. The average coal matrix 

compressibility for medium-rank coals is 3.1210
-4 

MPa
-1

. For high-rank coals, the coal matrix 

compressibility dec lines slightly from 0.9110
-4 

MPa
-1

 to 0.2510
-4 

MPa
-1

 as coal rank increases 

2.0%-2.95% Ro,m. Guo et al. (2014) examined the coals with rank of Ro,max=0.65–0.88%, the 
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matrix compressibility ranges from 2.01 to 2.74×10
−4 

MPa
−1

; Li et al. (1999) presented a 

subbituminous coal and a bituminous coal with the matrix compressibility of 2.50-3.13×10
−4

 

MPa
−1

; Toda and Toyoda (1972) and Spitzer (1981) examined the coals with carbon of 

72.7–93.2%, the matrix compressibility were in the range of 0.7-2.3×10
−4

 to 1.72-2.09×10
−4

 

MPa
−1

 respectively. And Cai et al. (2013) shows the coal matrix compressibility varies from 

1.55×10
−4

 MPa
−1

 to 2.37×10
−4

 MPa
−1

 with the Ro,max=0.54-1.19%. Recently, Song et al. (2018) 

reveals that the coal matrix compressibility of coals with Ro,max=0.63-0.81% are in the range of 

3.24-4.24×10
−4

 MPa
−1

. Using the above calculation method, the coal matrix compressibility for 

selected coals (0.24-13.56×10
−4 

MPa
−1

) obviously present a wider range than the values calculated 

by previous research (Cai et al., 2013; Guo et al., 2014; Li et al., 1999; Song et al., 2018; Spitzer, 

1981; Toda and Toyoda, 1972) due to the wide and consecutive coal rank with Ro,max of 

0.49–2.95%. 

Table 3 shows the difference in pore volume (19-100 nm) between the MIP and N2 adsorption 

methods. The results show that a big difference exists and a decreasing trend between the 

differences of pore volume and coal rank.  The effect of coal rank on coal matrix compressibility is 

probably due to significant chemical and phys ical changes that occur in the coals. For low-rank 

coals, the basic unit of the macromolecular structure of coal is randomly distributed and forms an 

open structure under the joint and support of numerous oxygen-containing functional groups and 

aliphatic side chains (Yu et al., 2013; Vega et al., 2017). With mechanical compaction, dehydration 

and degassing during coalification, the volume of the coal matrix changes greatly. Therefore, the 

coal matrix compressibility decreases rapidly in low coal rank coals. After the subbituminous 

stage of coalification, the lengths of the organic side chains of the coal become shorter and their 
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number decreases (He et al., 2017). Meanwhile, the condensed nucleus of humus complex 

increases, and then follows the increase in molecular weight, the slow increase in condensed 

aromatic rings and the gradual regularization of the molecular arrangement (Mayumi et al., 2016). 

Therefore, the coal matrix compressibility of the medium and high-rank coals emerges as a slow 

decreasing trend with increasing rank. 

4.2. Effects of macerals and minerals on coal matrix compressibility 

Macerals of the investigated coals are mainly composed of vitrinite, inertinite and exinite. A 

portion of the investigated coals lack exinites due to thorough metamorphism when the vitrinite 

reflectance reaches 1.19% Ro,m as listed in Table 1. Coal matrix compressibility correlates well 

with the vitrinite and inertinite, especially for low-rank coals. However, the exinite content has a 

fine relationship with the coal matrix compressibility of medium-rank coals, as shown in Fig. 5. 

For low and high-rank coals, the vitrinite and inertinite have significant effects on the coal matrix 

compressibility, which should be related to the brittle features and multiple micropores in vitrinite 

(Liu et al., 2017; Keshavarz et al., 2017), and stiffness features, mesopores, macropores and 

pyrites and clay minerals filled with the inertinite as shown in Fig. 6, especially for high-rank 

coals. An abundance of micropores in vitrinite causes the matrix to be difficult to compress. For 

the medium-rank coals, the coal matrix compressibility seems independent of the maceral 

composition except slight relation with exinite, which is possibly due to the limited samples of 

medium coal rank coals.  

Interestingly, for high-rank coals, the vitrinite and inertinite have a complex relationship with the 

coal matrix compressibility, as shown in Fig. 5. There is an opposite relationship between 

inertinite and coal matrix compressibility for low and high-rank coals. The inertinite normally 
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contains a large amount of meso- and macropores, as revealed by previous research (Giffin et al., 

2013). The reason for this opposite phenomenon is the meso- and macropores and minerals in the 

inertinite. For low-rank coals, the meso- and macropores have greater impacts on matrix 

compressibility than the minerals have on matrix compressibility. Therefore, the compressibility 

increases with increasing inertinite content. In contrast, the inertinite situation for high-rank coals 

is the opposite, which is due to the minerals that are filled with meso- and macropores during deep 

coal metamorphism (Li et al., 2017). The mineral content in volume ranges from 0-19.3%, as 

listed in Table 1. Although there is generally a negative exponential relationship between mineral 

content and coal matrix compressibility, as shown in Fig. 4(b), the data points vary. Although most 

minerals that occur in coal matrix pores could strengthen the matrix compressibility (Tao et al., 

2018), the existence of minerals, including those filling pores or not, also have an impact on coal 

matrix compressibility. For a few types of minerals, such as clay minerals, these minerals may not 

reinforce the matrix compressibility because of the pores that exist in these minerals. 

4.3. Effects of moisture and ash yields on coal matrix compressibility 

Fig. 7 shows that coal matrix compressibility increases linearly with increasing moisture content 

for all samples (correlation coefficient is 0.49). For low-rank coals, the coal matrix compressibility 

increases exponentially with increasing moisture content with correlation coefficient of 0.81. This 

result indicates that the moisture softening of coal could be signif icant. The wetting action of 

water molecules weakens the link between coal particles, which will weaken the mechanical 

properties of coals (Yu et al., 2013; Wu et al., 2017). Meanwhile, the water in the pores and 

fractures will produce pressure (Su et al., 2017), which will also reduce the elastic modulus of 

coals and improve the deformation ability, leading to easy compression deformation of the coal 
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matrix. Therefore, the moistures in low-rank coals can significantly increase the coal matrix 

compressibility response. Another reason that the moisture in low-rank coals raises the coal matrix 

compressibility is the more open structure of the low-rank coals that have not experience high 

pressure compaction during of coalif ication. The loss of moisture can lead to consolidation of the 

coal structure and shrinkage (Suuberg et al., 1993), which will reduce the coal matrix 

compressibility. Pan et al. (2010) illustrated that moisture in the coal matrix would cause coal 

shrinkage and changes in mechanical properties, thereby impacting coal permeability in reservoir 

conditions. 

Therefore, relatively high moistures can result in high coal matrix compressibility for low-rank 

coals. For medium-rank coals, the moisture content has a subtle linear relationship with coal 

matrix compressibility due to further compaction of the coal matrix after the early stage of 

coalif ication. For high-rank coals, as shown in Fig. 7(d), there is a subtle relationship between 

moisture and coal matrix compressibility. The coal matrix compressibility values have a 

decreasing trend with increasing moisture content from 0.62 to 1.03%. After that, the coal matrix 

compressibility follows an increasing trend with increasing moisture content. This phenomenon 

may originate from the limited available data for high-rank coals. 

Fig. 8(a) shows that porosity generally decreases with increasing ash yields for different rank 

coals even though the correlation coefficient varies, indicating that minerals fill the pores through 

mineralization and decrease the porosity of the coal. Fig. 8(b) shows that the relationship between 

coal matrix compressibility and ash yields demonstrating the matrix is not easily compressed for 

coals with high mineral matter content. 

4.4. Effects of pore structure on coal matrix compressibility 
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Fig. 9(a) shows a generally positive relationship between coal matrix compressibility and porosity. 

As coal rank increases, the effect of porosity on coal matrix compressibility decreases (low coal 

rank R
2
=0.92; medium coal rank R

2
=0.46; high coal rank R

2
=0.30). For low coal rank coals, the 

matrix compressibility quickly increases as porosity increases, which means that the porosity is a 

critical parameter that affects matrix compressibility for low-rank coals. As shown in Fig. 9(b). 

The porosity of medium-rank coals and the associated matrix compressibility shows a similar  

U-shaped curve, which decreases slightly as porosity increases from 0.00-4.13%, and then 

increases as porosity exceeds 4.13%. The relationship between the porosity of high-rank coals and 

matrix compressibility is analogous to that of medium-rank coals, as shown in Fig. 9(c) and 9(d).  

As shown in Fig. 10, there is an inverted, slight U-shaped relationship between total pore volume 

and coal matrix compressibility. As coal rank increases, the influence of total pore volume on coal 

matrix compressibility is also larger (low coal rank R
2
< 0.1; medium coal rank R

2
= 0.48; high coal 

rank R
2
= 0.87). An interesting phenomenon is observed here. For low-rank coal, the total pore 

volume has no signif icant effect on coal matrix compressibility, whereas the porosity has a 

signif icant influence. For medium-rank coals, the total pore volume and porosity both affect coal 

matrix compressibility. For high-rank coals, the influence of total pore volume on coal matrix 

compressibility is greater than that of porosity. This phenomenon indicates that porosity and total 

pore volume are coordinated factors that affect matrix compressibility. For low-rank coals, the 

pores are composed of a large amount of mesopores and macropores , as shown in Fig. 3. 

Therefore, the greater the porosity indicates the lower the matrix compressibility. However, the 

condition for high-rank coals is the opposite of low-rank coals. There are abundant micropores 

that have diameters less than 100 nm, accounting for over 75% of the porosity as revealed by 
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previous research (Cai et al., 2011). These micropores will resist the matrix compressibility. The 

influences of coal rank on the coal matrix compressibility should also be attributed to the 

micropore pore volumes as previous research confirmed (Guo et al., 2014; Song et al., 2018). 

Smaller mesopores and micropores gradually play dominant roles (Nie et al., 2015; Pan et al., 

2016). Therefore, the total pore volume is more important for matrix compressibility than porosity. 

By observing the effects of different pore sizes on matrix compressibility (Fig. 11), we found that 

mesopores are dominant within the different pores group, normally over 60% for medium and 

high-rank coals and over 85% for the low-rank coals for pores less 100 nm. The micropores and 

macropores account for less than 30% for different rank coals. The microporosity, mesoporosity 

and macroporosity have diverse impacts on coal matrix compressibility. For low and medium-rank 

coals, macropores have signif icant positive impacts on matrix compressibility compared to 

mesopores and micropores, as shown in Fig. 11(a) and (b). However, for high-rank coals, the 

mesopores have signif icant positive impacts on matrix compressibility compared to macropores 

and micropores, as shown in Fig. 11(c). These results indicate that the mesopores and macropores 

are critical for matrix compressibility, whereas micropores can effectively resist coal matrix 

compressibility. 

5. Conclusions 

Mercury intrusion porosimetry can be used as an effective means to evaluate pore structure, 

provided the matrix compressibility of coals associated with this method can be evaluated through 

N2 adsorption/desorption at 77 K. Factors that affect coal matrix compressibility were discussed 

herein. We determined that the coal matrix compressibility varies from 0.2410
-4 

MPa
-1

 to 

13.5610
-4 

MPa
-1

 as coal rank changes. The following conclusions are made: 
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1) Coal matrix compressibility follows an exponential decreasing trend with increasing coal rank. 

The coal matrix compressibility decreases rapidly in low-rank coals due to mechanical compaction, 

dehydration and degassing during coalif ication. The coal matrix compressibility of medium and 

high-rank coals shows a slow decreasing trend with increasing rank. 

2) There is an opposite relationship between inertinite and coal matrix compressibility for low and 

high-rank coals due to the meso- and macropores and minerals in the inertinites. For low-rank 

coals, the meso- and macropores have greater impacts on matrix compressibility than the minerals 

have on matrix compressibility. In contrast, the inertinite situation for the high-rank coal is the 

opposite, which is because the minerals are filled in meso- and macropores. 

3) For low-rank coals, the moisture in coals may have a significant effect on the coal matrix 

compressibility because the wetting action of water molecules weakens the link between coal 

particles, reduces the elastic modulus of coals and improves the deformation capacity.  

4) The mineral appearance, including whether minerals fill pores or not, also has an impact on 

coal matrix compressibility. There is a generally a negative exponential relationship between 

mineral content and coal matrix compressibility. For a few types of minerals, such as clay 

minerals, the minerals may not reinforce the matrix compressibility due to the pores that exist in 

the minerals.  

5) Micro-, meso- and macroporosity have diverse impacts on coal matrix compressibility. The 

mesoporosity and macroporosity in coals are critical for effective changes in coal matrix 

compressibility, whereas the micropores are less effected. 
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Nomenclature 

c
P , The pressure at which mercury enters pores (MPa) 

 , The surface tension (N/m) 

θ, The wetting contact angle (°) 

c
r , The capillary radius at the corresponding pressure (μm) 

m
C , Coal matrix compressibility (MPa-1) 

m
V , The coal matrix volume (cm3/g) 

m
d V / d P , The volume change of coal matrix as a function of pressure 

m e rc u ry
V , The observed increase in mercury volume (cm3/g) 

p o r e
V , Pore filling volume (cm3/g) 

c o m p a c tio n
V , Solid compression volume (cm3/g) 
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Captions for Figures and Tables 

Fig. 1. MIP curves of different coal ranks: (a) <0.65% Ro,m, (b) 0.65-2.0% Ro,m, and (c) >2.0% Ro,m
 
. 

Fig. 2. N2 adsorption/desorption at low temperature (77K) of different rank coals. a (LRC1) and b (LRC4) belong 

to the Type H4 loop that often associated with narrow slit -like pores; c(MRC8) may indicate ink-bottle pores with 

type H2 loop; d(MRC18), e(HRC1) and f(HRC4) may indicate slit -like/plate-like pores with type H3 loop. 

Fig. 3. Pore volume distribution of variable rank coals at different sizes. (a) displays the pore volume distribution 

of low-rank coals; (b) shows the variable pore volume distribution of medium-rank coals; (c) exhibits the pore 

volume distribution of high-rank coals. 

Fig. 4. Relation between vitrinite reflectance (Ro, m), mineral contents of variable coals and coal matrix 

compressibility. (a) shows a negative exponential relation between Ro, m and coal matrix compressibility; (b) 

displays a negative exponential relation between mineral contents and coal matrix compressibility. 

Fig. 5. Relations between maceral composition and coal matrix compressibility. (a) shows a clear negative relation 

between vitrinite content and  matrix compressibility for low-rank coals; (b) displays an obvious increase trend 

between inertinite and matrix compressibility for low-rank coals; (c) exhibits no clear relation between exinite 

content and for low-rank coals; No clear relations between vitrinite (d), inertinite (e), exinite (f) contents and 

matrix compressibility for medium-rank coals; (g) and (h) show no clear relation existed between vitrinite, 

inertinite and matrix compressibility in high-rank coals. 

Fig. 6. Minerals in selected coals. a(MRC24): Telinite (T) is fragmented. Collinite (C) presented in bands and 

aggregates. Semivitrinite (SV) and Semifusinite (Sf) mostly appear in lenticular form and fractures fill with pyrite 

veins; b(MRC26): A large amount of pyrite pellets are dispersedly distributed in collinite (C). Semifusinite (Sf) is 

in ellipsoidal and lenticular. Pores filled with clay minerals (Cl) are clear; c(MRC27): Telinite (T) is distributed in 

a wide band. Pores are easily deformed and filled with clay minerals (C l). Semifusinite (Sf) is granulated in 
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collinite. Pyrite (Py) is in a cluster distribution; d(HRC1): Collinite (C) is locally fragmented and filled with 

euhedral and semi-euhedral pyrite (Py), which shows metasomatism; e(HRC2): Collinite (C), telinite (T) and 

semivitrinite (SV) are distributed alternately, presenting in band or detritus. A few of semifusinite (SF) debris are 

sporadic. Clay minerals (Cl) exhibited in lump or filled in pores, and occasional pyrite (Py); f(HRC3): Telinite (T) 

and semitelinite (ST) with broken granular structure are closely associated. Pores are filled with clay minerals (Cl), 

occasionally particulate pyrite (Py). 

Fig. 7. Relations between moisture content in coals and coal matrix compressibility. (a) shows a general linear 

relation between moistures from all rank coals and matrix comressbility; (b) exhibits a positive exponential 

relation between moistures content and matrix compressibility in LRCs; (c) displays a slight linear relation 

between moistures from MRCs and matrix comressbility; (d) displays no clear relation between moistures from 

HRCs and matrix comressbility. 

Fig. 8. Relations between porosity, matrix compressibility and ash yields. (a) ash yields versus porosity and (b) ash 

yields versus coal matrix compressibility  

Fig. 9. Relationship between porosity of the different rank coals and coal matrix compressibility. (a) coal matrix 

compressibility versus porosities from all rank coals present an exponential relation; (b) exhibits a positive relation  

between coal matrix compressibility and porosities from LRC; (c) shows a general exponential relation between 

matrix compressibility and porosities in MRCs; (d) presents an U shaped relation between matrix compressibility 

and porosities in HRCs. 

Fig. 10. Relations between total pore volume of different rank coals and coal matrix compressibility. (a) shows a 

reversed U shaped relation with all samples; (b) no clear relation; (c) and (d) show reversed U shaped relation. 

Fig. 11. Relationship between pore size ratio of the different coal ranks and coal matrix compressibilit y. (a) 

low-rank coals; (b) medium-rank coals; (c)high-rank coals 

Table 1 Sample information and basic parameters of the selected Chinese coals 

Table 2 Calculation parameters of the coal matrix compressibility  for different rank coals 

Table 3 The difference of pore volume (19-100nm) between MIP and N2 adsorption methods 
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Fig. 3 
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Fig. 7 
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Fig. 8 
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Fig. 9  
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Fig. 10 
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Fig. 11 
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Table 1 Sample information and basic parameters of the selected Chinese coals  

Coal 

rank 

Sample 

no. 
Basins 

,o m
R  

(%) 

Maceral and mineral (vol %) Porosity 

(%) 

Prox (wt %, ad) 

V I E M Moisture Ash yields 

Low-ran

k Coal 

LRC1 

Junggar 

0.49 19.40 74.90 5.50 0.20 20.80 11.88 4.78 

LRC2 0.50 64.70 30.50 4.50 0.30 18.30 11.39 3.77 

LRC3 0.56 65.70 29.60 2.20 2.50 14.80 12.1 7.9 

LRC4 0.62 36.40 58.80 3.50 1.30 18.40 8.84 4.15 

LRC5 Hegang 0.65 78.30 10.30 11.10 0.30 1.70 1.48 9.81 

LRC6 
Junggar 

0.65 69.60 17.40 12.70 0.30 6.30 5.78 15.82 

LRC7 0.65 57.40 25.50 16.40 0.70 6.80 4.35 12.56 

Medium-

rank 

Coal 

MRC1 

Junggar 

0.66 63.40 28.80 7.50 0.30 13.20 8.88 7.95 

MRC2 0.66 60.30 20.30 18.20 1.20 6.00 5.18 13.25 

MRC3 0.67 11.00 75.80 13.20 0.00 7.30 5.52 7.94 

MRC4 Sanjiang 0.67 70.60 11.60 17.20 0.60 3.30 2.28 18.18 

MRC5 

Junggar 

0.68 72.30 11.00 16.20 0.50 9.40 8.42 13.63 

MRC6 0.68 69.90 18.30 11.60 0.20 13.40 4.41 8.82 

MRC7 0.68 12.40 78.80 8.80 0.00 14.70 6.38 11.30 

MRC8 0.70 78.00 12.20 7.00 2.80 5.50 5.82 22.95 

MRC9 0.72 77.60 15.00 5.00 2.40 2.90 4.78 21.96 

MRC10 Sanjiang 0.84 76.80 17.50 4.80 0.90 3.30 1.43 13.42 

MRC11 Hegang 0.85 73.70 19.60 6.20 0.50 1.40 0.86 4.41 

MRC12 Sanjiang 0.88 86.80 0.60 8.80 3.80 3.70 2.08 9.86 

MRC13 Hegang 0.94 34.00 62.70 1.70 1.60 1.80 0.72 18.00 

MRC14 Boli 0.98 79.70 19.10 0.70 0.50 1.30 0.92 21.81 

MRC15 Jixi 0.99 77.30 15.20 6.80 0.70 7.00 0.23 7.12 

MRC16 Ordos 1.06 57.81 32.19 2.50 7.50 10.83 0.71 12.04 

MRC17 Jixi 1.18 84.10 12.10 3.00 0.80 4.90 0.2 28.28 

MRC18 
Boli 

1.19 81.50 16.10 1.50 0.90 1.33 0.9 15.27 

MRC19 1.19 77.00 21.80 0.00 1.20 4.20 0.59 10.57 

MRC20 

Ordos 

1.24 60.68 25.02 0.00 14.30 5.55 0.74 10.27 

MRC21 1.33 54.56 38.54 0.00 6.90 4.76 0.66 8.27 

MRC22 1.37 59.27 29.33 0.00 11.40 3.68 0.66 15.19 

MRC23 1.43 68.97 27.63 0.00 3.40 4.13 0.59 7.03 

MRC24 1.51 62.54 18.16 0.00 19.30 2.07 0.83 20.67 

MRC25 1.76 52.25 38.15 0.00 9.60 8.86 0.56 8.54 

MRC26 
Qinshui 

1.78 79.02 16.88 0.00 4.10 13.96 0.6 9.03 

MRC27 1.90 64.15 23.25 0.00 12.60 1.38 0.71 15.18 

High-ran

k Coal 

HRC1 

Qinshui 

2.00 77.21 13.09 0.00 9.70 4.34 0.62 9.34 

HRC2 2.01 73.94 21.47 0.00 4.60 10.46 1.03 10.18 

HRC3 2.33 77.98 15.52 0.00 6.50 11.36 1.43 11.06 

HRC4 2.61 83.55 12.15 0.00 4.30 12.12 1.20 13.30 

HRC5 2.95 92.04 5.46 0.00 2.50 5.42 1.59 2.45 

Note: ad- as received basis; V- Vitrinite; I - Inertinite; E- Exinite; M- Mineral; Prox- Proximate analysis. 
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Table 2 Calculation parameters of the coal matrix compressibility  for different rank coals 

Sample no. Ro, m (%)
 

Vm (cm
3
/g) N (10

-4
) PV (10

-4
, cm

3
/g) Cm (10

-4
, 1
M P a

 ) 

LRC1 0.49 0.86 12.00 17.70 13.26 

LRC2 0.50 0.86 8.00 15.90 8.61 

LRC3 0.56 0.87 6.00 8.60 6.57 

LRC4 0.62 0.88 8.00 15.10 8.53 

LRC5 0.65 0.67 1.00 0.95 1.44 

LRC6 0.65 0.75 3.00 5.70 3.72 

LRC7 0.65 0.72 5.00 12.90 6.34 

MRC1 0.66 0.78 10.00 49.00 2.64 

MRC2 0.66 0.66 2.00 7.40 10.55 

MRC3 0.67 0.73 3.00 39.00 2.20 

MRC4 0.67 0.77 3.00 1.86 3.79 

MRC5 0.68 0.73 3.00 75.00 0.47 

MRC6 0.68 0.81 8.00 30.00 8.58 

MRC7 0.68 0.76 13.00 75.00 13.56 

MRC8 0.70 0.80 3.00 4.30 3.55 

MRC9 0.72 0.68 2.00 3.60 2.74 

MRC10 0.84 0.81 2.00 4.61 2.28 

MRC11 0.85 0.79 2.00 0.77 2.51 

MRC12 0.88 0.72 2.00 7.50 2.40 

MRC13 0.94 0.71 2.00 3.51 2.63 

MRC14 0.98 0.69 1.00 1.17 1.38 

MRC15 0.99 0.80 5.00 4.70 6.05 

MRC16 1.06 0.87 4.00 5.00 4.40 

MRC17 1.18 0.72 2.00 2.51 2.66 

MRC18 1.19 0.75 2.00 6.65 2.35 

MRC19 1.19 0.72 3.00 1.68 4.06 

MRC20 1.24 0.94 1.00 5.37 0.86 

MRC21 1.33 0.87 0.60 8.07 0.36 

MRC22 1.37 0.93 2.00 7.56 1.86 

MRC23 1.43 0.97 0.70 6.80 0.47 

MRC24 1.51 0.97 0.80 15.91 0.24 

MRC25 1.76 0.98 0.90 5.97 0.71 

MRC26 1.78 1.01 0.90 5.80 0.69 

MRC27 1.90 1.03 0.60 7.39 0.33 

HRC1 2.00 0.83 0.80 5.08 0.74 

HRC2 2.01 0.86 0.60 10.78 0.25 

HRC3 2.33 0.92 1.00 4.58 0.91 

HRC4 2.61 0.95 1.00 9.88 0.68 

HRC5 2.95 0.86 0.90 7.31 0.74 

Note: Vm- coal matrix volume; Cm- coal matrix compressibility ; PV- Pore volume 
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Table 3 The difference of pore volume (19-100nm) between MIP and N2 adsorption methods 

Coal rank Sample no. 
Pore Vol.(19-100nm) (10

-4
, cm

3
/g) Difference 

(10
-4

, cm
3
/g) MIP N2 adsorption 

Low 

Rank 

Coal 

 

LRC1 396.59 17.70 378.89 

LRC2 267.65 15.90 251.75 

LRC3 182.20 8.60 173.60 

LRC4 255.77 15.10 240.67 

LRC5 40.13 0.95 39.18 

LRC6 88.77 5.70 83.07 

LRC7 136.33 12.90 123.43 

Medium 

Rank 

Coal 

MRC1 52.85 7.40 45.45 

MRC2 281.02 49.00 232.02 

MRC3 83.79 39.00 44.79 

MRC4 74.89 1.86 73.03 

MRC5 97.36 75.00 22.36 

MRC6 243.19 30.00 213.19 

MRC7 372.44 75.00 297.44 

MRC8 83.10 4.30 78.80 

MRC9 50.83 3.60 47.23 

MRC10 69.19 4.61 64.58 

MRC11 49.99 0.77 49.22 

MRC12 51.31 7.50 43.81 

MRC13 43.68 3.51 40.17 

MRC14 40.64 1.17 39.47 

MRC15 148.51 4.70 143.81 

MRC16 126.55 5.00 121.55 

MRC17 71.84 2.51 69.33 

MRC18 53.78 6.65 47.13 

MRC19 89.10 1.68 87.42 

MRC20 36.23 5.37 30.86 

MRC21 27.53 8.07 19.46 

MRC22 42.84 7.56 35.27 

MRC23 20.14 6.80 13.35 

MRC24 22.92 15.91 7.00 

MRC25 26.54 5.97 20.57 

MRC26 28.38 5.80 22.58 

MRC27 18.20 7.39 10.81 

High 

Rank 

Coal 

HRC1 21.34 5.08 16.26 

HRC2 16.62 10.78 5.85 

HRC3 34.00 4.58 29.42 

HRC4 40.64 9.88 30.77 

HRC5 25.84 7.31 18.52 
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Research Highlights 

 

 Coal matrix compressibility shows an exponential decrease with increasing coal rank. 

 An antithetical relation between inertinite and coal matrix compressibility. 

 The wetting action of water molecules weakens the link between coal particles. 

 Mineral appearance has significant impact on coal matrix compressibility. 
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