1,614 research outputs found

    Ecosystem Approach to Small Scale Tropical Marine Fisheries

    Get PDF
    This is a 4-page brochure about a WorldFish led project. Throughout the world, poor fisheries management contributes to resource degradation, poverty, and food insecurity. This European Union project on an Ecosystem Approach to Small-scale Tropical Marine Fisheries is led by WorldFish and implemented in collaboration with national partners in Asia (Southeastern)-Indonesia; the Asia (Southeastern)-Philippines; the Solomon Islands and Tanzania. The overall objective is to use an ecosystem approach to fisheries management (EAFM) to improve governance of small-scale fisheries (SSF). The EAFM puts sustainability and equitability at the forefront of fisheries governance which enhances their contribution to poverty reduction.Specific objectives are to: 1. Assess existing institutional arrangements and identify opportunities for an EAFM to improve integrated SSF management; 2. Develop EAFM strategies and actions suitable for developing country contexts; 3. Strengthen the capacity of local fishery stakeholders and government agencies to collaborate and work within an EAFM. The project is taking a participatory and gender sensitive approach, both core philosophies of WorldFish. Representatives of all relevant stakeholder groups are involved in this action research project

    Large-Scale Image Processing with the ROTSE Pipeline for Follow-Up of Gravitational Wave Events

    Full text link
    Electromagnetic (EM) observations of gravitational-wave (GW) sources would bring unique insights into a source which are not available from either channel alone. However EM follow-up of GW events presents new challenges. GW events will have large sky error regions, on the order of 10-100 square degrees, which can be made up of many disjoint patches. When searching such large areas there is potential contamination by EM transients unrelated to the GW event. Furthermore, the characteristics of possible EM counterparts to GW events are also uncertain. It is therefore desirable to be able to assess the statistical significance of a candidate EM counterpart, which can only be done by performing background studies of large data sets. Current image processing pipelines such as that used by ROTSE are not usually optimised for large-scale processing. We have automated the ROTSE image analysis, and supplemented it with a post-processing unit for candidate validation and classification. We also propose a simple ad hoc statistic for ranking candidates as more likely to be associated with the GW trigger. We demonstrate the performance of the automated pipeline and ranking statistic using archival ROTSE data. EM candidates from a randomly selected set of images are compared to a background estimated from the analysis of 102 additional sets of archival images. The pipeline's detection efficiency is computed empirically by re-analysis of the images after adding simulated optical transients that follow typical light curves for gamma-ray burst afterglows and kilonovae. We show that the automated pipeline rejects most background events and is sensitive to simulated transients to limiting magnitudes consistent with the limiting magnitude of the images

    Order-N Density-Matrix Electronic-Structure Method for General Potentials

    Full text link
    A new order-N method for calculating the electronic structure of general (non-tight-binding) potentials is presented. The method uses a combination of the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and Daw, and a representation of the density matrix based on ``travelling basis orbitals''. The method is applied to several one-dimensional examples, including the free electron gas, the ``Morse'' bound-state potential, a discontinuous potential that mimics an interface, and an oscillatory potential that mimics a semiconductor. The method is found to contain Friedel oscillations, quantization of charge in bound states, and band gap formation. Quantitatively accurate agreement with exact results is found in most cases. Possible advantages with regard to treating electron-electron interactions and arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Discussion of Recent Decisions

    Get PDF

    Vacancy diffusion in the Cu(001) surface II: Random walk theory

    Get PDF
    We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(001) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.Comment: 13 pages, 4 figure

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure

    Calculation of Elastic Green's Functions for Lattices with Cavities

    Full text link
    In this Brief Report, we present an algorithm for calculating the elastic Lattice Greens Function of a regular lattice, in which defects are created by removing lattice points. The method is computationally efficient, since the required matrix operations are on matrices that scale with the size of the defect subspace, and not with the size of the full lattice. This method allows the treatment of force fields with multi-atom interactions.Comment: 3 pages. RevTeX, using epsfig.sty. One figur

    Measurement of the quenching factor of Na recoils in NaI(Tl)

    Full text link
    Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neutrons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 \pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.Comment: 21 pages, 13 figure

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure
    corecore