2,420 research outputs found

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets

    Full text link
    This paper tackles important aspects of comets dynamics from a statistical point of view. Existing methodology uses numerical integration for computing planetary perturbations for simulating such dynamics. This operation is highly computational. It is reasonable to wonder whenever statistical simulation of the perturbations can be much more easy to handle. The first step for answering such a question is to provide a statistical study of these perturbations in order to catch their main features. The statistical tools used are order statistics and heavy tail distributions. The study carried out indicated a general pattern exhibited by the perturbations around the orbits of the important planet. These characteristics were validated through statistical testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and Astrophysic

    Quadrupole transitions near interface: general theory and application to atom inside a planar cavity

    Full text link
    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of Green function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case when the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.Comment: 18 pages, 7 figure

    Calculation of the energy spectrum of a two-electron spherical quantum dot

    Full text link
    We study the energy spectrum of the two-electron spherical parabolic quantum dot using the exact Schroedinger, the Hartree-Fock, and the Kohn-Sham equations. The results obtained by applying the shifted-1/N method are compared with those obtained by using an accurate numerical technique, showing that the relative error is reasonably small, although the first method consistently underestimates the correct values. The approximate ground-state Hartree-Fock and local-density Kohn-Sham energies, estimated using the shifted-1/N method, are compared with accurate numerical self-consistent solutions. We make some perturbative analyses of the exact energy in terms of the confinement strength, and we propose some interpolation formulae. Similar analysis is made for both mean-field approximations and interpolation formulae are also proposed for these exchange-only ground-state cases.Comment: 18 pages, LaTeX, 2 figures-ep

    Proton Wires in an Electric Field: the Impact of Grotthuss Mechanism on Charge Translocation

    Full text link
    We present the results of the modeling of proton translocation in finite H-bonded chains in the framework of two-stage proton transport model. We explore the influence of reorientation motion of protons, as well as the effect of electric field and proton correlations on system dynamics. An increase of the reorientation energy results in the transition of proton charge from the surrounding to the inner water molecules in the chain. Proton migration along the chain in an external electric field has a step-like character, proceeding with the occurrence of electric field threshold-type effects and drastic redistribution of proton charge. Electric field applied to correlated chains induces first a formation of ordered dipole structures for lower field strength, and than, with a further field strength increase, a stabilization of states with Bjerrum D-defects. We analyze the main factors responsible for the formation/annihilation of Bjerrum defects showing the strong influence of the complex interplay between reorientation energy, electric field and temperature in the dynamics of proton wire.Comment: 28 pages, 9 figure

    Solitons in Yakushevich-like models of DNA dynamics with improved intrapair potential

    Full text link
    The Yakushevich (Y) model provides a very simple pictures of DNA torsion dynamics, yet yields remarkably correct predictions on certain physical characteristics of the dynamics. In the standard Y model, the interaction between bases of a pair is modelled by a harmonic potential, which becomes anharmonic when described in terms of the rotation angles; here we substitute to this different types of improved potentials, providing a more physical description of the H-bond mediated interactions between the bases. We focus in particular on soliton solutions; the Y model predicts the correct size of the nonlinear excitations supposed to model the ``transcription bubbles'', and this is essentially unchanged with the improved potential. Other features of soliton dynamics, in particular curvature of soliton field configurations and the Peierls-Nabarro barrier, are instead significantly changed

    Cylindrically symmetric solitons in Einstein-Yang-Mills theory

    Get PDF
    Recently new Einstein-Yang-Mills (EYM) soliton solutions were presented which describe superconducting strings with Kasner asymptotic (hep-th/0610183). Here we study the static cylindrically symmetric SU(2) EYM system in more detail. The ansatz for the gauge field corresponds to superposition of the azimuthal BĎ•B_\phi and the longitudinal BzB_z components of the color magnetic field. We derive sum rules relating data on the symmetry axis to asymptotic data and show that generic asymptotic structure of regular solutions is Kasner. Solutions starting with vacuum data on the axis generically are divergent. Regular solutions correspond to some bifurcation manifold in the space of parameters which has the low-energy limiting point corresponding to string solutions in flat space (with the divergent total energy) and the high-curvature point where gravity is crucial. Some analytical results are presented for the low energy limit, and numerical bifurcation curves are constructed in the gravitating case. Depending on the parameters, the solution looks like a straight string or a pair of straight and circular strings. The existence of such non-linear superposition of two strings becomes possible due to self-interaction terms in the Yang-Mills action which suppress contribution of the circular string near the polar axis.Comment: 21 pages, 11 figure

    Quantum coherence and carriers mobility in organic semiconductors

    Full text link
    We present a model of charge transport in organic molecular semiconductors based on the effects of lattice fluctuations on the quantum coherence of the electronic state of the charge carrier. Thermal intermolecular phonons and librations tend to localize pure coherent states and to assist the motion of less coherent ones. Decoherence is thus the primary mechanism by which conduction occurs. It is driven by the coupling of the carrier to the molecular lattice through polarization and transfer integral fluctuations as described by the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent regime are modeled via the Anderson hamiltonian with correlated diagonal and non-diagonal disorder leading to the determination of the carrier localization length. This length defines the coherent extension of the ground state and determines, in turn, the diffusion range in the incoherent regime and thus the mobility. The transfer integral disorder of Troisi and Orlandi can also be incorporated. This model, based on the idea of decoherence, allowed us to predict the value and temperature dependence of the carrier mobility in prototypical organic semiconductors that are in qualitative accord with experiments
    • …
    corecore