40 research outputs found

    Testing Transitivity of Preferences on Two-Alternative Forced Choice Data

    Get PDF
    As Duncan Luce and other prominent scholars have pointed out on several occasions, testing algebraic models against empirical data raises difficult conceptual, mathematical, and statistical challenges. Empirical data often result from statistical sampling processes, whereas algebraic theories are nonprobabilistic. Many probabilistic specifications lead to statistical boundary problems and are subject to nontrivial order constrained statistical inference. The present paper discusses Luce's challenge for a particularly prominent axiom: Transitivity. The axiom of transitivity is a central component in many algebraic theories of preference and choice. We offer the currently most complete solution to the challenge in the case of transitivity of binary preference on the theory side and two-alternative forced choice on the empirical side, explicitly for up to five, and implicitly for up to seven, choice alternatives. We also discuss the relationship between our proposed solution and weak stochastic transitivity. We recommend to abandon the latter as a model of transitive individual preferences

    Precision education: A Bayesian nonparametric approach for handling item and examinee heterogeneity in assessment data

    Full text link
    We propose a novel nonparametric Bayesian IRT model in this paper by introducing the clustering effect at question level and further assume heterogeneity at examinee level under each question cluster, characterized by the mixture of Binomial distributions. The main contribution of this work is threefold: (1) We demonstrate that the model is identifiable. (2) The clustering effect can be captured asymptotically and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a root n rate (up to a log term). (3) We present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. We evaluate our model via a series of simulations as well as apply it to an English assessment data. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests

    Statistics in the service of science : don’t let the tail wag the dog

    Get PDF
    Statistical modeling is generally meant to describe patterns in data in service of the broader scientific goal of developing theories to explain those patterns. Statistical models support meaningful inferences when models are built so as to align parameters of the model with potential causal mechanisms and how they manifest in data. When statistical models are instead based on assumptions chosen by default, attempts to draw inferences can be uninformative or even paradoxical—in essence, the tail is trying to wag the dog. These issues are illustrated by van Doorn et al. (this issue) in the context of using Bayes Factors to identify effects and interactions in linear mixed models. We show that the problems identified in their applications (along with other problems identified here) can be circumvented by using priors over inherently meaningful units instead of default priors on standardized scales. This case study illustrates how researchers must directly engage with a number of substantive issues in order to support meaningful inferences, of which we highlight two: The first is the problem of coordination, which requires a researcher to specify how the theoretical constructs postulated by a model are functionally related to observable variables. The second is the problem of generalization, which requires a researcher to consider how a model may represent theoretical constructs shared across similar but non-identical situations, along with the fact that model comparison metrics like Bayes Factors do not directly address this form of generalization. For statistical modeling to serve the goals of science, models cannot be based on default assumptions, but should instead be based on an understanding of their coordination function and on how they represent causal mechanisms that may be expected to generalize to other related scenarios

    The pipeline project:Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had "in the pipeline" as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed. (C) 2015 The Authors. Published by Elsevier Inc.</p

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science

    The pipeline project: Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had “in the pipeline” as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science.Link_to_subscribed_fulltex

    The pipeline project: Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    © 2015 The Authors This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had âin the pipelineâ as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed.Link_to_subscribed_fulltex

    Behavioral variability of choices versus structural inconsistency of preferences.

    No full text

    A shift in strategy or "error"? Strategy classification over multiple stochastic specifications

    No full text
    We present a classification methodology that jointly assigns to a decision maker a best-fitting decision strategy for a set of choice data as well as a best-fitting stochastic specification of that decision strategy. Our methodology utilizes normalized maximum likelihood as a model selection criterion to compare multiple, possibly non-nested, stochastic specifications of candidate strategies. In addition to single strategy with ``error'' stochastic specifications, we consider mixture specifications, i.e., strategies comprised of a probability distribution over multiple strategies. In this way, our approach generalizes the classification framework of Broder and Schiffer (2003a). We apply our methodology to an existing dataset and find that some decision makers are best fit by a single strategy with varying levels of error, while others are best described as using a mixture specification over multiple strategies.mixture models, strategy classification, comparative model fit, normalized maximum likelihood, error models, stochastic specification.
    corecore