352 research outputs found
Construction of an all-sky camera
The "All-Sky" camera herein described is an outgrowth of
camera* operated in Alaska by the staff of the Geophysical Institute.
The principle has been of use in cloud studies and was
first used by C. W. Gar tie in for auroral photography. In its p resent
form the camera is capable of recording stable or slowly
moving auroral forms and is useful for synoptic "mapping of auroras
and detail studies. By proper scaling methods the camera
gives fa irly well defined mapping of aurora occurring within a
circle of 500 km radius and along the lengths of arcs, i.e . geomagnetic
East and West, to distances of about 1200 km. These
radii are based on an estimated lower border height of 100 km with
curved earth consideration.
Since the main use of the camera will be in high latitudes where
severe weather conditions occur, special effort has been made to
design a rugged instrument capable of withstanding high winds and
low temperatures. Ease of operation under adverse weather conditions
has also been a consideration. Whenever possible, use
has been made of commercially available parts to reduce construction
costs. An attempt has been made to simplify the construction
of those parts not commercially available. The camera
is designed to be built in a shop having a d rill press, lathe, milling
machine, welding equipment, and carpentry tools.
The recording element is a 16 mm movie camera with a 50 mm
f/l. 5 lens and equipped for lapse-time photography. The camera
views the entire sky in a convex mirror. A number of cameras
have been considered, two of which, the Bolex H-16 Leader and
the Kodak K-100, appear best suited with respect to cost and adaptability.
The Bolex H-16 is equipped for lapse-time photography
and requires no modification. The Bolex has the disadvantage of
only sixteen feet of film run per spring winding, hence, requires
attention each ten hours if one picture per minute is to be taken.
The Kodak K-100 must be modified for lapse photography but has
forty feet of useful film run and will operate without attention for
twenty-four hours at one frame per minute. Both these cameras
may be solenoid driven which allows variation of exposure times
with minimum effort.
An overall view of the camera is shown in Fig. 1. Fig. 2 shows t
the optical arrangement. Calculations made on the basis of Fig. 2
and the graph of height, angle, and distance, Fig. 3, allows the
location with respect to the earth's surface of any point on the
photographic image.Ye
Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams
Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated.We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA.Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables.Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity.Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide
Self-consistent description of nuclear compressional modes
Isoscalar monopole and dipole compressional modes are computed for a variety
of closed-shell nuclei in a relativistic random-phase approximation to three
different parametrizations of the Walecka model with scalar self-interactions.
Particular emphasis is placed on the role of self-consistency which by itself,
and with little else, guarantees the decoupling of the spurious
isoscalar-dipole strength from the physical response and the conservation of
the vector current. A powerful new relation is introduced to quantify the
violation of the vector current in terms of various ground-state form-factors.
For the isoscalar-dipole mode two distinct regions are clearly identified: (i)
a high-energy component that is sensitive to the size of the nucleus and scales
with the compressibility of the model and (ii) a low-energy component that is
insensitivity to the nuclear compressibility. A fairly good description of both
compressional modes is obtained by using a ``soft'' parametrization having a
compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR
On the self-consistent spin-wave theory of layered Heisenberg magnets
The versions of the self-consistent spin-wave theories (SSWT) of
two-dimensional (2D) Heisenberg ferro- and antiferromagnets with a weak
interlayer coupling and/or magnetic anisotropy, that are based on the
non-linear Dyson-Maleev, Schwinger, and combined boson-pseudofermion
representations, are analyzed. Analytical results for the temperature
dependences of (sublattice) magnetization and short-range order parameter, and
the critical points are obtained. The influence of external magnetic field is
considered. Fluctuation corrections to SSWT are calculated within a
random-phase approximation which takes into account correctly leading and
next-leading logarithmic singularities. These corrections are demonstrated to
improve radically the agreement with experimental data on layered perovskites
and other systems. Thus an account of these fluctuations provides a
quantitative theory of layered magnets.Comment: 46 pages, RevTeX, 7 figure
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania
The human genetic factors that affect resistance to infectious disease are poorly understood. Here we report a genome-wide association study in 17,000 severe malaria cases and population controls from 11 countries, informed by sequencing of family trios and by direct typing of candidate loci in an additional 15,000 samples. We identify five replicable associations with genome-wide levels of evidence including a newly implicated variant on chromosome 6. Jointly, these variants account for around one-tenth of the heritability of severe malaria, which we estimate as -23% using genome-wide genotypes. We interrogate available functional data and discover an erythroid-specific transcription start site underlying the known association in ATP2B4, but are unable to identify a likely causal mechanism at the chromosome 6 locus. Previously reported HLA associations do not replicate in these samples. This large dataset will provide a foundation for further research on thegenetic determinants of malaria resistance in diverse populations.Peer reviewe
Defining failed induction of labor
BACKGROUND: While there are well-accepted standards for the diagnosis of arrested active-phase labor, the definition of a "failed" induction of labor remains less certain. One approach to diagnosing a failed induction is based on the duration of the latent phase. However, a standard for the minimum duration that the latent phase of a labor induction should continue, absent acute maternal or fetal indications for cesarean delivery, remains lacking.
OBJECTIVE: The objective of this study was to determine the frequency of adverse maternal and perinatal outcomes as a function of the duration of the latent phase among nulliparous women undergoing labor induction.
METHODS: This study is based on data from an obstetric cohort of women delivering at 25 U.S. hospitals from 2008-2011. Nulliparous women who had a term singleton gestation in the cephalic presentation were eligible for this analysis if they underwent a labor induction. Consistent with prior studies, the latent phase was determined to begin once cervical ripening had ended, oxytocin was initiated and rupture of membranes (ROM) had occurred, and was determined to end once 5 cm dilation was achieved. The frequencies of cesarean delivery, as well as of adverse maternal (e.g., cesarean delivery, postpartum hemorrhage, chorioamnionitis) and perinatal outcomes (e.g., a composite frequency of either seizures, sepsis, bone or nerve injury, encephalopathy, or death), were compared as a function of the duration of the latent phase (analyzed with time both as a continuous measure and categorized in 3-hour increments).
RESULTS: A total of 10,677 women were available for analysis. In the vast majority (96.4%) of women, the active phase had been reached by 15 hours. The longer the duration of a woman's latent phase, the greater her chance of ultimately undergoing a cesarean delivery (P<0.001, for time both as a continuous and categorical independent variable), although more than forty percent of women whose latent phase lasted for 18 or more hours still had a vaginal delivery. Several maternal morbidities, such as postpartum hemorrhage (P < 0.001) and chorioamnionitis (P < 0.001), increased in frequency as the length of latent phase increased. Conversely, the frequencies of most adverse perinatal outcomes were statistically stable over time.
CONCLUSION: The large majority of women undergoing labor induction will have entered the active phase by 15 hours after oxytocin has started and rupture of membranes has occurred. Maternal adverse outcomes become statistically more frequent with greater time in the latent phase, although the absolute increase in frequency is relatively small. These data suggest that cesarean delivery should not be undertaken during the latent phase prior to at least 15 hours after oxytocin and rupture of membranes have occurred. The decision to continue labor beyond this point should be individualized, and may take into account factors such as other evidence of labor progress
Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort
Although preterm birth less than 37 weeks gestation is the leading cause of neonatal morbidity and mortality in the United States, the majority of data regarding preterm neonatal outcomes come from older studies, and many reports have been limited to only very preterm neonates. Delineation of neonatal outcomes by delivery gestational age is needed to further clarify the continuum of mortality and morbidity frequencies among preterm neonates
- …