2,136 research outputs found
The strong Atiyah conjecture for right-angled Artin and Coxeter groups
We prove the strong Atiyah conjecture for right-angled Artin groups and
right-angled Coxeter groups. More generally, we prove it for groups which are
certain finite extensions or elementary amenable extensions of such groups.Comment: Minor change
Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates
Recent analyses of nuclear decay data show evidence of variations suggestive
of a solar influence. Analyses of datasets acquired at the Brookhaven National
Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both
show evidence of an annual periodicity and of periodicities with sidereal
frequencies in the neighborhood of 12.25 year^{-1} (at a significance level
that we have estimated to be 10^{-17}). It is notable that this implied
rotation rate is lower than that attributed to the solar radiative zone,
suggestive of a slowly rotating solar core. This leads us to hypothesize that
there may be an "inner tachocline" separating the core from the radiative zone,
analogous to the "outer tachocline" that separates the radiative zone from the
convection zone. The Rieger periodicity (which has a period of about 154 days,
corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode
oscillation with spherical-harmonic indices l=3, m=1, located in the outer
tachocline. This suggests that we may test the hypothesis of a solar influence
on nuclear decay rates by searching BNL and PTB data for evidence of a
"Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The
appropriate search band for such an oscillation is estimated to be 2.00-2.28
year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11
year^{-1}. We estimate that the probability of obtaining these results by
chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected
reference, and a corrected typ
Prey selection by an apex predator : the importance of sampling uncertainty.
The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection.
Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly's standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies
A Probabilistic Environmental Decision Support Framework for Managing Risk and Resources
The ability to make cost effective, timely decisions associated with waste management and environmental remediation problems has been the subject of considerable debate in recent years. On one hand, environmental decision makers do not have unlimited resources that they can apply to come to resolution on outstanding and uncertain technical issues. On the other hand, because of the possible impending consequences associated with these types of systems, avoiding making a decision is usually not an alternative either. Therefore, a structured, quantitative process is necessary that will facilitate technically defensible decision making in light of both uncertainty and resource constraints. An environmental decision support framework has been developed to provide a logical structure that defines a cost-effective, traceable, and defensible path to closure on decision regarding compliance and resource allocation. The methodology has been applied effectively to waste disposal problems and is being adapted and implemented in subsurface environmental remediation problems
Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core
A search for any particular feature in any single solar neutrino dataset is
unlikely to establish variability of the solar neutrino flux since the count
rates are very low. It helps to combine datasets, and in this article we
examine data from both the Homestake and GALLEX experiments. These show
evidence of modulation with a frequency of 11.85 yr-1, which could be
indicative of rotational modulation originating in the solar core. We find that
precisely the same frequency is prominent in power spectrum analyses of the
ACRIM irradiance data for both the Homestake and GALLEX time intervals. These
results suggest that the solar core is inhomogeneous and rotates with sidereal
frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the
probability that the neutrino data would by chance match the irradiance data in
this way is only 2 parts in 10,000. This rotation rate is significantly lower
than that of the inner radiative zone (13.97 yr-1) as recently inferred from
analysis of Super-Kamiokande data, suggesting that there may be a second, inner
tachocline separating the core from the radiative zone. This opens up the
possibility that there may be an inner dynamo that could produce a strong
internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure
Diagonalization of full finite temperature Green's function by quasi-particles
For thermal systems, standard perturbation theory breaks down because of the
absence of stable, observable asymptotic states. We show, how the introduction
of {\it statistical} quasi-particles (stable, but not observable) gives rise to
a consistent description. Statistical and spectral information can be cleanly
separated also for interacting systems.Comment: 9 pages in standard LaTe
Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation
Evidence for an anomalous annual periodicity in certain nuclear decay data
has led to speculation concerning a possible solar influence on nuclear
processes. We have recently analyzed data concerning the decay rates of Cl-36
and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for
evidence that might be indicative of a process involving solar rotation.
Smoothing of the power spectrum by weighted-running-mean analysis leads to a
significant peak at frequency 11.18/yr, which is lower than the equatorial
synodic rotation rates of the convection and radiative zones. This article
concerns measurements of the decay rates of Ra-226 acquired at the
Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar
(but not identical) analysis yields a significant peak in the PTB dataset at
frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in
the BNL result is not significant since the uncertainties in the BNL and PTB
analyses are estimated to be 0.13/yr and 0.07/yr, respectively. Combining the
two running means by forming the joint power statistic leads to a highly
significant peak at frequency 11.23/yr. We comment briefly on the possible
implications of these results for solar physics and for particle physics.Comment: 15 pages, 13 figure
Effects of different ACE inhibitor combinations on albuminuria: results of the GUARD study
Clinical practice guidelines recommend blockers of the renin-angiotensin system alone or in combination with other agents to reduce blood pressure and albuminuria in patients with type 2 diabetes. Dihydropyridine calcium channel blockers, however, may lower blood pressure but not albuminuria in these patients. Here we tested the hypothesis that combining an ACE inhibitor with either a thiazide diuretic or a calcium channel blocker will cause similar reductions in blood pressure and albuminuria in hypertensive type 2 diabetics. We conducted a double blind randomized controlled trial on 332 hypertensive, albuminuric type 2 diabetic patients treated with benazepril with either amlodipine or hydrochlorothiazide for 1 year. The trial employed a non-inferiority design. Both combinations significantly reduced the urinary albumin to creatinine ratio and sitting blood pressure of the entire cohort. The percentage of patients progressing to overt proteinuria was similar for both groups. When we examined patients who had only microalbuminuria and hypertension we found that a larger percentage of the diuretic and ACE inhibitor normalized their albuminuria. We conclude that initial treatment using benzaepril with a diuretic resulted in a greater reduction in albuminuria compared to the group of ACE inhibitor and calcium channel blocker. In contrast, blood pressure reduction, particularly the diastolic component, favored the combination with amilodipine. The dissociation between reductions in blood pressure and albuminuria may be related to factors other than blood pressure
Order Parameter at the Boundary of a Trapped Bose Gas
Through a suitable expansion of the Gross-Pitaevskii equation near the
classical turning point, we obtain an explicit solution for the order parameter
at the boundary of a trapped Bose gas interacting with repulsive forces. The
kinetic energy of the system, in terms of the classical radius and of the
harmonic oscillator length , follows the law , approaching, for large , the
results obtained by solving numerically the Gross-Pitaevskii equation. The
occurrence of a Josephson-type current in the presence of a double trap
potential is finally discussed.Comment: 11 pages, REVTEX, 4 figures (uuencoded-gzipped-tar file) also
available at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
Bosons in anisotropic traps: ground state and vortices
We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic
trap, modeled by an anisotropic harmonic potential. We evaluate the wave
function and the energy of the Bose Einstein condensate as a function of the
particle number, both for positive and negative scattering length. The results
for the transverse and vertical size of the cloud of atoms, as well as for the
kinetic and potential energy per particle, are compared with the predictions of
approximated models. We also compare the aspect ratio of the velocity
distribution with first experimental estimates available for Rb. Vortex
states are considered and the critical angular velocity for production of
vortices is calculated. We show that the presence of vortices significantly
increases the stability of the condensate in the case of attractive
interactions.Comment: 22 pages, REVTEX, 8 figures available upon request or at
http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
- …