1,502 research outputs found

    Physical processes associated with current collection by plasma contactors

    Get PDF
    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors

    NASCAP/LEO calculations of current collection

    Get PDF
    NASCAP/LEO is a 3-dimensional computer code for calculating the interaction of a high-voltage spacecraft with the cold dense plasma found in Low Earth Orbit. Although based on a cubic grid structure, NASCAP/LEO accepts object definition input from standard computer aided design (CAD) programs so that a model may be correctly proportioned and important features resolved. The potential around the model is calculated by solving the finite element formulation of Poisson's equation with an analytic space charge function. Five previously published NASCAP/LEO calculations for three ground test experiments and two space flight experiments are presented. The three ground test experiments are a large simulated panel, a simulated pinhole, and a 2-slit experiment with overlapping sheaths. The two space flight experiments are a solar panel biased up to 1000 volts, and a rocket-mounted sphere biased up to 46 kilovolts. In all cases, the authors find good agreement between calculation and measurement

    Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells

    Get PDF
    The authors investigate the effect of oxygen implantation and rapid thermal annealing in ZnO∕ZnMgOmultiple quantum wells using photoluminescence. A blueshift in the photoluminescence is observed in the implanted samples. For a low implantation dose, a significant increase of activation energy and a slight increase of the photoluminescence efficiency are observed. This is attributed to the suppression of the point defect complexes and transformation between defect structures by implantation and subsequent rapid thermal annealing. A high dose of implantation leads to lattice damage and agglomeration of defects leading to large defect clusters, which result to an increase in nonradiative recombination.The authors gratefully acknowledge the Australian Research Council for financial support and Swinburne University of Technology for Strategic Initiative funding. One of the authors X.W. acknowledges partial financial support of the Chinese National Natural Science Foundation 10364004 and the Yunnan Natural Science Foundation 2003E0013M

    Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities

    Get PDF
    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator. We review EPIC S overall capabilities and recent modifications, and discuss directions for future enhancements

    Characterization of the Activation of Protein Tyrosine Phosphatase, Receptor-Type, Z Polypeptide 1 (PTPRZ1) by Hypoxia Inducible Factor-2 Alpha

    Get PDF
    Hypoxia inducible factors (HIFs) are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1). PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis.To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets) factor that can bind to HIF-2α but not HIF-1α, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region.These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy

    The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 1360–1376, doi:10.1002/2015JC011141.Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2–10 cm setup of sea level that drives cross-reef currents of 5–20 cm s−1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.This research is based on work supported by awards USA 00002 and KSA 00011 KAUST. K. Davis was supported by a WHOI Postdoctoral Fellowship. T. Farrar was partly supported by NSF grant OCE-1435665. S. Lentz was partly supported by NSF grants OCE-1332646 and OCE-1357290.2016-08-1

    Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    Get PDF
    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL)

    Draft Genome Sequences of 10 Bacterial Strains Isolated from Root Nodules of Alnus Trees in New Hampshire

    Get PDF
    Here, we report the draft genome sequences obtained for 10 bacterial strains isolated from root nodules of Alnus trees. These members of the nodule microbiome were sequenced to determine their potential functional roles in plant health. The selected strains belong to the genera Rhodococcus, Kocuria, Rothia, Herbaspirillum, Streptomyces, and Thiopseudomonas

    Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature

    No full text
    We have studied ZnO∕ZnMgO multiple quantum wells by spectrally resolved transient four-wave mixing with both one- and two-color excitations. The presence of an extended signal at negative interpulse delays in the two-color experiment is attributed to the two-photon coherence resulting from the generation of biexcitons. This technique provides a means to observe a transient four-wave mixing from biexcitons in the absence of any other signal, and thereby provides the first clear evidence that biexcitons are present in narrow ZnO∕ZnMgOquantum wells at room temperature. Dephasing times of the order of 100fs for the biexcitons are measured.The authors gratefully acknowledge The Australian Research Council for financial support and Swinburne University of Technology for Strategic Initiative funding

    Thermal quenching of photoluminescence in ZnO/ZnMgO multiple quantum wells following oxygen implantation and rapid thermal annealing

    Get PDF
    The temperature-dependent photoluminescence in oxygen-implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells is investigated. A difference in the thermal quenching of the photoluminescence is found between the implanted and unimplanted quantum wells. Oxygen implantation and subsequent rapid thermal annealing results in the diffusion of magnesium atoms into quantum wells and thus, leads to an increased fluctuation in the potential of the quantum wells and the observation of a large thermal activation energy. However, a high dose of implantation results in large defect clusters and thus an additional nonradiative channel, which leads to a flat potential fluctuation and a small thermal activation energy
    • …
    corecore