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ABSTRACT Here, we report the draft genome sequences obtained for 10 bacterial
strains isolated from root nodules of Alnus trees. These members of the nodule micro-
biome were sequenced to determine their potential functional roles in plant health. The
selected strains belong to the genera Rhodococcus, Kocuria, Rothia, Herbaspirillum, Strep-
tomyces, and Thiopseudomonas.

Actinorhizal plants form a symbiotic association with members of the nitrogen-
fixing actinobacterial genus Frankia that allows these plants to colonize stressed

environments (1–6). Besides containing Frankia spp., the actinorhizal root nodules
contain large numbers of other actinobacteria occupying the same microniche as
Frankia spp. (7–13). Many non-Frankia actinobacteria that have been isolated from
actinorhizal root nodules might contribute to nodulation or aid in plant growth and
health (8, 9, 14). As expected, this situation is not unique to actinorhizal nodules but is
found in all plants that form root nodule structures, including legume nodules (15–17).
There is a growing body of evidence suggesting that both wild and cultivated legume
nodules are not exclusively inhabited by rhizobia but contain diverse assemblages of
nonrhizobial bacteria (15–18).

Root nodule samples were collected from Alnus trees found by Adam’s Pond at
Jackson’s Laboratory in Durham, NH. The root nodules were surface sterilized with
hydrogen peroxide and rinsed several times with sterile distilled water. The last wash
of the sterilized nodule was incubated in LB medium to ensure that all epiphytes
associated with the plant were removed. The nodule was cut into a fine powder with
a sterilized razor, and dilutions were plated onto Czapeck and R2A media containing
cycloheximide and nalidixic acid. About 60 isolates were initially obtained, purified, and
propagated on either Czapeck or R2A medium (Table 1). These isolates were incubated
overnight in their respective isolation medium (Table 1), and genomic DNA (gDNA) was
extracted by the cetyltrimethylammonium bromide (CTAB) DNA extraction protocol
(19). RNA was removed by RNase treatment. The quality and quantity of the gDNA were
verified using a Thermo Scientific NanoDrop instrument. These isolates were initially
identified by amplifying and sequencing their 16S rRNA genes. Based on these results,
10 isolates were chosen for whole-genome sequencing analysis to provide insight into
their plant-microbe interactions, including potential plant growth-promoting activity.

Whole-genome sequencing was performed at the Hubbard Center for Genome
Studies (University of New Hampshire, Durham, NH) using Illumina technology tech-
niques (20). A paired-end library was constructed using a Nextera DNA library prepa-
ration kit (Illumina, San Diego, CA) and sequenced on an Illumina HiSeq 2500 instru-
ment to produce 250-bp paired-end reads. The total numbers of reads for all 10 strains
are listed in Table 1. The Illumina sequence data were trimmed using Trimmomatic
version 0.36 (21). TruSeq adapters were trimmed with an allowance of two mismatches.
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Leading and trailing bases below a quality of three were trimmed. The reads were then
scanned with a sliding window of 4 bp and trimmed if the average quality dropped
below 30. Finally, reads were dropped if the length was less than 36 bp. Trimmed
sequencing reads were assembled using SPAdes version 3.13 (22), with the default
settings. The assembled genomes were annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (23). The assembly metrics and annotation features are
given in Table 1. The identities of the strains were determined by whole-genome-based
taxonomic analysis via the Type (Strain) Genome Server (TYGS) platform (24) (https://
tygs.dsmz.de), including digital DNA:DNA hybridization (dDDH) values (25). The type-
based species clustering using a 70% dDDH radius around each of the type strains was
used as previously described (26), while subspecies clustering was done using a 79%
dDDH threshold, as previously introduced (27). Among the 10 strains, new species of
the genera Streptomyces, Rhodococcus, Herbaspirillum, and Thiopseudomonas were
identified, including one Herbaspirillum subspecies. Bioinformatic analysis of these
genomes by the use of the antiSMASH 4.0 program (28) revealed the presence of high
numbers of secondary metabolic biosynthetic gene clusters. Many of these potential
natural products should be involved in plant-microbe interactions and aid in their plant
growth-promoting activities.

Data availability. The draft genome sequences of these bacterial strains have been
deposited in GenBank under the accession numbers listed in Table 1. Both the assembly
and raw reads are available at DDBJ/ENA/GenBank under BioProject number PRJNA480027.
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