4,124 research outputs found

    Macroeconomic implications of changes in micro volatility

    Get PDF
    We review evidence on the Great Moderation in conjunction with evidence about volatility trends at the micro level. We combine the two types of evidence to develop a tentative story for important components of the aggregate volatility decline and its consequences. The key ingredients of the story are declines in firm-level volatility and aggregate volatility – most dramatically in the durable goods sector – but the absence of a decline in the volatility of household consumption and individual earnings. Our explanation for volatility reduction stresses improved supply chain management, particularly in the durable goods sector, and a shift in production and employment from goods to services. We also provide some evidence for a specific mechanism, namely shorter lead times for materials orders. The tentative conclusion we draw is that, although better supply chain management involves potentially large efficiency gains with first-order effects on welfare, it does not imply (nor is there much evidence for) a reduction in uncertainty faced by individuals.

    Global synchronization algorithms for the Intel iPSC/860

    Get PDF
    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms

    Behavioral conservatism is linked to complexity of behavior in chimpanzees (<i>Pan troglodytes</i>):implications for cognition and cumulative culture

    Get PDF
    Cumulative culture is rare, if not altogether absent in nonhuman species. At the foundation of cumulative learning is the ability to modify, relinquish, or build upon previous behaviors flexibly to make them more productive or efficient. Within the primate literature, a failure to optimize solutions in this way is often proposed to derive from low-fidelity copying of witnessed behaviors, suboptimal social learning heuristics, or a lack of relevant sociocognitive adaptations. However, humans can also be markedly inflexible in their behaviors, perseverating with, or becoming fixated on, outdated or inappropriate responses. Humans show differential patterns of flexibility as a function of cognitive load, exhibiting difficulties with inhibiting suboptimal behaviors when there are high demands on working memory. We present a series of studies on captive chimpanzees that indicate that behavioral conservatism in apes may be underlain by similar constraints: Chimpanzees showed relatively little conservatism when behavioral optimization involved the inhibition of a well-established but simple solution, or the addition of a simple modification to a well-established but complex solution. In contrast, when behavioral optimization involved the inhibition of a well-established but complex solution, chimpanzees showed evidence of conservatism. We propose that conservatism is linked to behavioral complexity, potentially mediated by cognitive resource availability, and may be an important factor in the evolution of cumulative culture.</p

    Drivers and projections of global surface temperature anomalies at the local scale

    Get PDF

    Interpreting the Great Moderation: Changes in the Volatility of Economic Activity at the Macro and Micro Levels

    Get PDF
    We review evidence on the Great Moderation in conjunction with evidence about volatility trends at the micro level. We combine the two types of evidence to develop a tentative story for important components of the aggregate volatility decline and its consequences. The key ingredients are declines in firm-level volatility and aggregate volatility -- most dramatically in the durable goods sector -- but the absence of a decline in household consumption volatility and individual earnings uncertainty. Our explanation for the aggregate volatility decline stresses improved supply-chain management, particularly in the durable goods sector, and, less important, a shift in production and employment from goods to services. We provide evidence that better inventory control made a substantial contribution to declines in firm-level and aggregate volatility. Consistent with this view, if we look past the turbulent 1970s and early 1980s much of the moderation reflects a decline in high frequency (short-term) fluctuations. While these developments represent efficiency gains, they do not imply (nor is there evidence for) a reduction in economic uncertainty faced by individuals and households.

    Coral reef drag coefficients—surface gravity wave enhancement

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.2019-01-1

    Coral reef drag coefficients – water depth dependence

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1061-1075, doi:10.1175/JPO-D-16-0248.1.A major challenge in modeling the circulation over coral reefs is uncertainty in the drag coefficient because existing estimates span two orders of magnitude. Current and pressure measurements from five coral reefs are used to estimate drag coefficients based on depth-average flow, assuming a balance between the cross-reef pressure gradient and the bottom stress. At two sites wind stress is a significant term in the cross-reef momentum balance and is included in estimating the drag coefficient. For the five coral reef sites and a previous laboratory study, estimated drag coefficients increase as the water depth decreases consistent with open channel flow theory. For example, for a typical coral reef hydrodynamic roughness of 5 cm, observational estimates, and the theory indicate that the drag coefficient decreases from 0.4 in 20 cm of water to 0.005 in 10 m of water. Synthesis of results from the new field observations with estimates from previous field and laboratory studies indicate that coral reef drag coefficients range from 0.2 to 0.005 and hydrodynamic roughnesses generally range from 2 to 8 cm. While coral reef drag coefficients depend on factors such as physical roughness and surface waves, a substantial fraction of the scatter in estimates of coral reef drag coefficients is due to variations in water depth.The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST to S. Lentz and J. Churchill. The Palau field program was funded by NSF Award OCE-1220529
    • …
    corecore