3,335 research outputs found

    Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Get PDF
    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers

    Life-space, frailty, and health-related quality of life

    Get PDF
    INTRODUCTION: Life-space and frailty are closely linked to health-related quality of life and understanding their inter-relationship could indicate potential intervention targets for improving quality of life. We set out to examine the relationship between frailty and life-space and their relative impact on quality of life measures. METHODS: Using cross-sectional data from a population-representative cohort of people aged ≥ 70 years, we assessed quality of life with the EuroQol Health Index tool (5-levels) (EQ-5D-5L). We also undertook a life-space assessment and derived a frailty index. Linear regression models estimated EQ-5D-5L scores (dependent variable) using life-space assessment, frailty index and interactions between them. All models were adjusted by age, sex, lifestyle, and social care factors. RESULTS: A higher EQ-5D Index was associated with higher life-space (0.02 per life-space assessment score, 95%CI: 0.01 to 0.03, p < 0.01) and decreasing frailty (-0.1 per SD, 95%CI: -0.1 to -0.1, p < 0.01). There was evidence of an interaction between life-space and frailty, where the steepest gradient for life-space and EQ-5D was in those with the highest frailty (interaction term = 0.02 per SD of frailty, 95%CI: 0.01 to 0.03, p < 0.01). CONCLUSION: Individuals with the highest frailty were twice as likely to have higher quality of life in association with a larger life-space. Interventions designed to improve quality of life in frail older people could focus on increasing a person's life-space

    Random walks and market efficiency in Chinese and Indian equity markets

    Full text link
    Hypothesis of Market Efficiency is an important concept for the investors across the globe holding diversified portfolios. With the world economy getting more integrated day by day, more people are investing in global emerging markets. This means that it is pertinent to understand the efficiency of these markets. This paper tests for market efficiency by studying the impact of global financial crisis of 2008 and the recent Chinese crisis of 2015 on stock market efficiency in emerging stock markets of China and India. The data for last 20 years was collected from both Bombay Stock Exchange (BSE200) and the Shanghai Stock Exchange Composite Index and divided into four sub-periods, i.e. before financial crisis period (period-I), during recession (period-II), after recession and before Chinese Crisis (periodIII) and from the start of Chinese crisis till date (period- IV). Daily returns for the SSE and BSE were examined and tested for randomness using a combination of auto correlation tests, runs tests and unit root tests (Augmented Dickey-Fuller) for the entire sample period and the four sub-periods. The evidence from all these tests supports that both the Indian and Chinese stock markets do not exhibit weak form of market efficiency. They do not follow random walk overall and in the first three periods (1996 till the 2015) implying that recession did not impact the markets to a great extent, although the efficiency in percentage terms seems to be increasing after the global financial crisis of 2008

    A spatial-temporal analysis of section 404 wetland permitting in Texas and Florida: Thirteen years of impact along the coast

    Get PDF
    Over the past 200 years, an estimated 53% (about 47 million ha) of the original wetlands in the conterminous United States have been lost, mainly as a result of various human activities. Despite the importance of wetlands (particularly along the coast), and a longstanding federal policy framework meant to protect their integrity, the cumulative impact on these natural systems over large areas is poorly understood. We address this lack of research by mapping and conducting descriptive spatial analyses of federal wetland alteration permits (pursuant to section 404 of the Clean Water Act) across 85 watersheds in Florida and coastal Texas from 1991 to 2003. Results show that more than half of the permits issued in both states (60%) fell under the Nationwide permitting category. Permits issued in Texas were typically located outside of urban areas (78%) and outside 100-year floodplains (61%). More than half of permits issued in Florida were within urban areas (57%) and outside of 100-year floodplains (51%). The most affected wetlands types were estuarine in Texas (47%) and palustrine in Florida (55%). We expect that an additional outcome of this work will be an increased awareness of the cumulative depletion of wetlands and loss of ecological services in these urbanized areas, perhaps leading to increased conservation efforts

    Comparison of Dog Surveys and Fall Covey Surveys in Estimating Fall Population Trends of Northern Bobwhite

    Get PDF
    The use of fall covey surveys to monitor population trends for northern bobwhite (Colinus virginianus; hereafter bobwhite) have been widely used in bobwhite research. Estimates of relative abundance from this monitoring technique are often important in assessing population responses to management practices or annual variation. However, conducting covey call surveys is labor intensive and typically can only be conducted during a narrow time frame. The use of dogs as a research tool may offer an efficient alternative to monitor bobwhite population trends. While dogs have been used in research for many other gallinaceous species, their application for bobwhite has received minimal research. To compare traditional and novel (dog) methods for both relative population abundance and density estimation, we conducted covey call surveys (50 points) and dog transects (32 km) during the fall (Sep-Oct) season from 2012-2014 at Beaver River WMA, Beaver County, Oklahoma, USA. A total of 306 detections were observed through fall covey count surveys, while only 44 detections were observed through dog transect surveys. Fall covey surveys yielded indices of 1.45, 2.04, and 3.21 detections per point count during 2012, 2013, and 2014, respectively. Dog transects yielded 0.23, 0.34, and 0.67 detections per km during 2012, 2013, and 2014, respectively. A Pearson’s correlation coefficient of 0.996 indicated high correlation between indices estimated between both survey methods. However, the low sample size for detections during dog surveys precluded any analysis that would yield bobwhite density estimates. Our results indicate that dog transects can be a method for estimating abundance indices for bobwhite. However, if estimates of bobwhite densities are of interest, then use of dog transect surveys are not recommended as only under high quail densities or with high observer efforts do enough detections accumulate for robust density estimation unless large effort is expended

    A Church-based Diabetes Self-management Education Program for African Americans With Type 2 Diabetes

    Get PDF
    INTRODUCTION: Diabetes self-management education interventions in community gathering places have been moderately effective, but very few studies of intervention effectiveness have been conducted among African Americans with type 2 diabetes. This paper describes a church-based diabetes self-management education intervention for African Americans, a randomized controlled trial to evaluate the intervention, and baseline characteristics of study participants. METHODS: A New DAWN: Diabetes Awareness & Wellness Network was conducted among 24 churches of varying size in North Carolina. Each church recruited congregants with type 2 diabetes and designated a diabetes advisor, or peer counselor, to be part of the intervention team. Participants were enrolled at each church and randomized as a unit to either the special intervention or the minimal intervention. The special intervention included one individual counseling visit, twelve group sessions, three postcard messages from the participant's diabetes care provider, and twelve monthly telephone calls from a diabetes advisor. Baseline data included measures of weight, hemoglobin A1c, blood pressure, physical activity, dietary and diabetes self-care practices, and psychosocial factors. The study to evaluate the intervention (from enrollment visit to last follow-up) began in February 2001 and ended in August 2003. RESULTS: Twenty-four churches (with 201 total participants) were randomized. Sixty-four percent of the participants were women. On average, the participants were aged 59 years and sedentary. They had an average of 12 years of education, had been diagnosed with diabetes for 9 years, had a body mass index of 35, had a hemoglobin A1c level of 7.8%, and had a reported dietary intake of 39% of calories from fat. CONCLUSION: A New DAWN is a culturally sensitive, church-based diabetes self-management education program for African Americans with type 2 diabetes that is being evaluated for effectiveness in a randomized controlled trial. The outcomes of A New DAWN will contribute to the literature on community-based interventions for minority populations and help to inform the selection of approaches to improve diabetes care in this population

    A plea for scale, and why it matters for invasive species management, biodiversity and conservation

    Get PDF
    Invasive species are suspected to be major contributors to biodiversity declines worldwide. Counterintuitively, however, invasive species effects are likely scale dependent and are hypothesized to be positively related to biodiversity at large spatial scales. Past studies investigating the effect of invasion on biodiversity have been mostly conducted at small scales (\u3c100 m2) that cannot represent large dynamic landscapes by design. Therefore, replicated experimental evidence supporting a negative effect of invasive plants on biodiversity is lacking across many landscape types, including large grasslands. We collected data across eight large (333–809 ha) grassland landscapes managed with pyric herbivory—that is the recoupling of fire and grazing—to test how an invasive legume Lespedeza cuneata affected plant and bird communities at spatial grains ranging from 0.1 m2 to \u3e3,000,000 m2. Lespedeza cuneata invasion effects on grassland plant diversity and composition changed with scale, being negative at small spatial grains (0.1 m2) and neutral or positive at large spatial grains (\u3e3,000,000 m2). Lespedeza cuneata abundance did not significantly affect bird diversity at any spatial grain measured. Lespedeza cuneata may negatively affect biodiversity if abundances are greater than those observed in this study. However, previous research suggests that Lespedeza cuneata may not be capable of exceeding 20% canopy cover across large landscapes (\u3e400 ha). Control and eradication strategies can be costly and are fraught with risk. If data do not clearly support a negative Lespedeza cuneata abundance–biodiversity relationship, and if invasion is spatially limited across large landscapes, ongoing control and eradication efforts may be unwarranted and ineffective. Synthesis and applications: Invasive species effects gleaned from small-scale studies may not reliably predict their effects at larger scales. Although we recognize the importance of small-scale studies in potentially isolating individual mechanisms, management strategies based solely on results from small-scale studies of invasion are unlikely to increase or conserve biodiversity across large landscapes. Rather, processes that generate landscape heterogeneity—like pyric herbivory—are probably more important for promoting biodiversity across all scales. Scale is a central problem in ecology, and defining scale in management objectives is essential for effective biodiversity conservation

    Bison movements change with weather: Implications for their continued conservation in the Anthropocene

    Get PDF
    Animal movement patterns are affected by complex interactions between biotic and abiotic landscape conditions, and these patterns are being altered by weather variability associated with a changing climate. Some animals, like the American plains bison (Bison bison L.; hereafter, plains bison), are considered keystone species, thus their response to weather variability may alter ecosystem structure and biodiversity patterns. Many movement studies of plains bison and other ungulates have focused on point-pattern analyses (e.g., resource-selection) that have provided information about where these animals move, but information about when or why these animals move is limited. For example, information surrounding the influence of weather on plains bison movement in response to weather is limited but has important implications for their conservation in a changing climate. To explore how movement distance is affected by weather patterns and drought, we utilized 12-min GPS data from two of the largest plains bison herds in North America to model their response to weather and drought parameters using generalized additive mixed models. Distance moved was best predicted by air temperature, wind speed, and rainfall. However, air temperature best explained the variation in distance moved compared to any other single parameter we measured, predicting a 48% decrease in movement rates above 28°C. Moreover, severe drought (as indicated by 25-cm depth soil moisture) better predicted movement distance than moderate drought. The strong influence of weather and drought on plains bison movements observed in our study suggest that shifting climate and weather will likely affect plains bison movement patterns, further complicating conservation efforts for this wide-ranging keystone species. Moreover, changes in plains bison movement patterns may have cascading effects for grassland ecosystem structure, function, and biodiversity. Plains bison and grassland conservation efforts need to be proactive and adaptive when considering the implications of a changing climate on bison movement patterns

    Quantum enhanced measurement of rotations with a spin-1 Bose-Einstein condensate in a ring trap

    Get PDF
    We present a model of a spin-squeezed rotation sensor utilizing the Sagnac effect in a spin-1 Bose-Einstein condensate in a ring trap. The two input states for the interferometer are seeded using Raman pulses with Laguerre-Gauss beams and are amplified by the bosonic enhancement of spin-exchange collisions, resulting in spin-squeezing and potential quantum enhancement of the interferometry. The ring geometry has an advantage over separated beam path atomic rotation sensors due to the uniform condensate density. We model the interferometer both analytically and numerically for realistic experimental parameters and find that significant quantum enhancement is possible, but this enhancement is partially degraded when working in a regime with strong atomic interactions
    • …
    corecore