13 research outputs found

    Primary Care Provider Receptivity to Multi-Cancer Early Detection Test Use in Cancer Screening

    Get PDF
    Multi-cancer early detection tests (MCEDs) are blood-based tests that detect biomarkers released or induced by cancer cells. If MCED tests are shown to be safe and effective in cancer screening, they are likely to be ordered and managed in primary care. To understand primary care providersā€™ support for and concerns about the implementation and management of MCED testing, the research team developed a cross-sectional survey that was sent to 939 primary care providers (physicians, residents/fellows, and advanced practice providers) in a large academic health system in the greater Philadelphia area. The survey included standard items used to assess provider background characteristics and to measure provider awareness of challenges related to MCED test use (7 items), perceived competence in MCED testing (5 items), and receptivity to MCED test use in the future (4 items). A total of 351 (37.4%) primary care providers completed the survey. Among respondents, the awareness of challenges in MCED testing (mean = 3.95, sd = 0.64), perceived competence (3.67, sd = 0.85), and receptivity to MCED use in practice (mean = 3.62, 0.75) were moderately high. Multiple regression was performed to identify factors associated with receptivity to MCED testing. We found that provider number of years in practice (DATA), awareness of challenges related to MCED testing (DATA), and perceived competence in MCED test use (DATA) were positively and significantly associated with receptivity to MCED test use in practice. An exploratory factor analysis extracted two components: receptivity to MCEDs and awareness of challenges. Surprisingly, these factors had a positive correlation (r = 0.124, p = 0.024). Providersā€™ perceived competence in using MCED tests and providersā€™ experience level were significantly associated with receptivity to MCED testing. While there was strong agreement with potential challenges to implementing MCEDs, PCPs were generally receptive to using MCEDs in cancer screening. Keeping PCPs updated on the evolving knowledge of MCEDs is likely critical to building receptivity to MCED testing

    Factors Likely to Affect the Uptake of Genomic Approaches to Cancer Screening in Primary Care: A Scoping Review

    Get PDF
    Genomic tests are being developed for use in cancer screening. As most screening is offered in primary care settings, primary care provider and patient perceptions of such tests are likely to affect uptake. We conducted a scoping review to synthesize information on factors likely to affect patient and provider use of biospecimen collection and analysis for cancer screening, methods referred to as liquid biopsy or multi-cancer early detection (MCED) testing when used to detect multiple cancers. We ultimately identified 7 articles for review and analyzed them for major themes. None reported on primary care provider perspectives. Six articles focused on patient perceptions about testing for a single cancer (colorectal), and 1 reported on patient views related to testing for multiple cancers. Factors favoring this type of testing included its non-invasiveness, and the perceived safety, convenience, and effectiveness of testing. There is a dearth of information in the literature on primary care provider perceptions about liquid biopsy and MCED testing. The limited information on patient perceptions suggests that they are receptive to such tests. Research on primary care provider and patient test-related knowledge, attitudes, and behavior is needed to guide future implementation in primary care settings

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in humanā€“wildlife interactions along gradients of human influence.Peer reviewe

    Primary Care Patient Interest in Multi-Cancer Early Detection for Cancer Screening

    No full text
    Multi-cancer early detection (MCED) tests are being developed, but little is known about patient receptivity to their use for cancer screening. The current study assessed patient interest in such testing. Our team conducted a prospective, observational study among primary care patients in a large, urban health system. They were asked to complete a telephone survey that briefly described a new blood test in development to identify multiple types of cancer, but was not currently recommended or covered by insurance. The survey included items to assess respondent background characteristics, perceptions about MCED testing, and interest in having such an MCED test. We also used multivariable analyses to identify factors associated with patient interest in test use. In 2023, we surveyed 159 (32%) of 500 identified patients. Among respondents, 125 (79%) reported a high level of interest in having an MCED test. Interest was not associated with personal background characteristics, but was positively associated with the following expectations: testing would be recommended for cancer screening, be convenient, and be effective in finding early-stage disease (OR = 11.70, 95% CI: 4.02, 34.04, p < 0.001). Research is needed to assess patient interest and actual uptake when detailed information on testing is presented in routine care

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25ā€“50%) than euchromatic reference regions (3ā€“11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11ā€“27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4ā€“3.6 vs. 8.4ā€“8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, Ī±=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that Ī±=1.63Ā±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore