1,447 research outputs found

    Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized

    Get PDF
    INTRODUCTION. Although the presence of bone marrow lesions (BMLs) on magnetic resonance images is strongly associated with osteoarthritis progression and pain, the underlying pathology is not well established. The aim of the present study was to evaluate the architecture of subchondral bone in regions with and without BMLs from the same individual using bone histomorphometry. METHODS. Postmenopausal female subjects (n = 6, age 48 to 90 years) with predominantly medial compartment osteoarthritis and on a waiting list for total knee replacement were recruited. To identify the location of the BMLs, subjects had a magnetic resonance imaging scan performed on their study knee prior to total knee replacement using a GE 1.5 T scanner with a dedicated extremity coil. An axial map of the tibial plateau was made, delineating the precise location of the BML. After surgical removal of the tibial plateau, the BML was localized using the axial map from the magnetic resonance image and the lesion excised along with a comparably sized bone specimen adjacent to the BML and from the contralateral compartment without a BML. Cores were imaged via microcomputed tomography, and the bone volume fraction and tissue mineral density were calculated for each core. In addition, the thickness of the subchondral plate was measured, and the following quantitative metrics of trabecular structure were calculated for the subchondral trabecular bone in each core: trabecular number, thickness, and spacing, structure model index, connectivity density, and degree of anisotropy. We computed the mean and standard deviation for each parameter, and the unaffected bone from the medial tibial plateau and the bone from the lateral tibial plateau were compared with the affected BML region in the medial tibial plateau. RESULTS. Cores from the lesion area displayed increased bone volume fraction but reduced tissue mineral density. The samples from the subchondral trabecular lesion area exhibited increased trabecular thickness and were also markedly more plate-like than the bone in the other three locations, as evidenced by the lower value of the structural model index. Other differences in structure that were noted were increased trabecular spacing and a trend towards decreased trabecular number in the cores from the medial location as compared with the contralateral location. CONCLUSIONS. Our preliminary data localize specific changes in bone mineralization, remodeling and defects within BMLs features that are adjacent to the subchondral plate. These BMLs appear to be sclerotic compared with unaffected regions from the same individual based on the increased bone volume fraction and increased trabecular thickness. The mineral density in these lesions, however, is reduced and may render this area to be mechanically compromised, and thus susceptible to attrition.National Institutes of Health and National Institute of Arthritis and Musculoskeletal and Skin: Biomarkers in Osteoarthritis MRI Studies (U01 AR50900-02); AstraZenic

    Evolution of Inhomogeneous Condensates after Phase Transitions

    Full text link
    Using the O(4) linear σ\sigma model, we address the topic of non-equilibrium relaxation of an inhomogeneous initial configuration due to quantum and thermal fluctuations. The space-time evolution of an inhomogeneous fluctuation of the condensate in the isoscalar channel decaying via the emission of pions in the medium is studied within the context of disoriented chiral condensates. We use out of equilibrium closed time path methods in field theory combined with the amplitude expansion. We give explicit expressions for the asymptotic space-time evolution of an initial inhomogeneous configuration including the contribution of thresholds at zero and non-zero temperature. At non-zero temperature we find new relaxational processes due to thermal cuts that have no counterpart in the homogeneous case. Within the one-loop approximation, we find that the space time evolution of such inhomogeneous configuration out of equilibrium is effectively described in terms of a rapidity dependent temperature T(ϑ)=T/cosh[ϑ]T(\vartheta)=T/\cosh[\vartheta] as well as a rapidity dependent decay rate Γ(ϑ,T(ϑ))\Gamma(\vartheta, T(\vartheta)). This rate is to be interpreted as the production minus absorption rate of pions in the medium and approaches the zero temperature value at large rapidities. An initial configuration localized on a bounded region spreads and decays in spherical waves with slower relaxational dynamics at large rapidity.Comment: 25 pages Revtex 3.0, two figures available upon reques

    An horizon scan of biogeography

    Get PDF
    The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter-disciplinary research, the importance of recognizing the evolution-ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and re-exploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, and key theoretical frameworks await tools to handle, or strategies to simplify, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico-deductive branches and establish a greater role within and outside academia

    The pentameric complex drives immunologically covert cell -cell transmission of wild-type human cytomegalovirus

    Get PDF
    Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell–cell transmission. This process of cell–cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128–131A complex, a feature of WT but not passaged strains of HCMV

    Nanometric depth resolution from multi-focal images in microscopy

    Get PDF
    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels

    HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells

    Get PDF
    Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b’ domain is associated with loss of virulence. In a screen of UL/b’, we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix

    Intracranial EEG structure-function coupling predicts surgical outcomes in focal epilepsy

    Get PDF
    Alterations to structural and functional brain networks have been reported across many neurological conditions. However, the relationship between structure and function -- their coupling -- is relatively unexplored, particularly in the context of an intervention. Epilepsy surgery alters the brain structure and networks to control the functional abnormality of seizures. Given that surgery is a structural modification aiming to alter the function, we hypothesized that stronger structure-function coupling preoperatively is associated with a greater chance of post-operative seizure control. We constructed structural and functional brain networks in 39 subjects with medication-resistant focal epilepsy using data from intracranial EEG (pre-surgery), structural MRI (pre-and post-surgery), and diffusion MRI (pre-surgery). We investigated pre-operative structure-function coupling at two spatial scales a) at the global iEEG network level and b) at the resolution of individual iEEG electrode contacts using virtual surgeries. At global network level, seizure-free individuals had stronger structure-function coupling pre-operatively than those that were not seizure-free regardless of the choice of interictal segment or frequency band. At the resolution of individual iEEG contacts, the virtual surgery approach provided complementary information to localize epileptogenic tissues. In predicting seizure outcomes, structure-function coupling measures were more important than clinical attributes, and together they predicted seizure outcomes with an accuracy of 85% and sensitivity of 87%. The underlying assumption that the structural changes induced by surgery translate to the functional level to control seizures is valid when the structure-functional coupling is strong. Mapping the regions that contribute to structure-functional coupling using virtual surgeries may help aid surgical planning

    Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil

    Get PDF
    Background: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. Methodology/Principal findings: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. Conclusions/Significance: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions

    Oregon 2100: projected climatic and ecological changes

    Get PDF
    Greenhouse climatic warming is underway and exacerbated by human activities. Future outcomes of these processes can be projected using computer models checked against climatic changes during comparable past atmospheric compositions. This study gives concise quantitative predictions for future climate, landscapes, soils, vegetation, and marine and terrestrial animals of Oregon. Fossil fuel burning and other human activities by the year 2100 are projected to yield atmospheric CO2 levels of about 600-850 ppm (SRES A1B and B1), well above current levels of 400 ppm and preindustrial levels of 280 ppm. Such a greenhouse climate was last recorded in Oregon during the middle Miocene, some 16 million years ago. Oregon’s future may be guided by fossil records of the middle Miocene, as well as ongoing studies on the environmental tolerances of Oregon plants and animals, and experiments on the biological effects of global warming. As carbon dioxide levels increase, Oregon’s climate will move toward warm temperate, humid in the west and semiarid to subhumid to the east, with increased summer and winter drought in the west. Western Oregon lowlands will become less suitable for temperate fruits and nuts and Pinot Noir grapes, but its hills will remain a productive softwood forest resource. Improved pasture and winter wheat crops will become more widespread in eastern Oregon. Tsunamis and stronger storms will exacerbate marine erosion along the Oregon Coast, with significant damage to coastal properties and cultural resources
    corecore