44,943 research outputs found
Geological evaluation of Nimbus vidicon photography, Chesapeake Bay-Blue Ridge
Geological evaluation of Nimbus vidicon photography of Chesapeake Bay to Blue Ridge are
Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data
The solar-cyle variation of acoustic mode frequencies has a frequency
dependence related to the inverse mode inertia. The discrepancy between model
predictions and measured oscillation frequencies for solar and solar-type
stellar acoustic modes includes a significant frequency-dependent term known as
the surface term that is also related to the inverse mode inertia. We
parametrize both the surface term and the frequency variations for low-degree
solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree
data from the Global Oscillations Network Group (GONG) using the mode inertia
together with cubic and inverse frequency terms. We find that for the central
frequency of rotationally split multiplets the cubic term dominates both the
average surface term and the temporal variation, but for the medium-degree case
the inverse term improves the fit to the temporal variation. We also examine
the variation of the even-order splitting coefficients for the medium-degree
data and find that, as for the central frequency, the latitude-dependent
frequency variation, which reflects the changing latitudinal distribution of
magnetic activity over the solar cycle, can be described by the combination of
a cubic and an inverse function of frequency scaled by inverse mode inertia.
The results suggest that this simple parametrization could be used to assess
the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments
We present observations at 10 and 15 GHz taken with the Tenerife experiments
in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to
multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK
for the 10 and the 15 GHz data, respectively. After subtraction of the
prediction of known radio-sources, the analysis of the data at 15 GHz at high
Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32
microK. In the case of a Harrison-Zeldovich spectrum for the primordial
fluctuations, a likelihood analysis shows that this signal corresponds to a
quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our
previous results at Dec.+=40 degrees and with the results of the COBE DMR.
There is clear evidence for the presence of individual features in the RA range
190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A
preliminary comparison between our results and COBE DMR predictions for the
Tenerife experiments clearly indicates the presence of individual features
common to both. The constancy in amplitude over such a large range in frequency
(10-90 GHz) is strongly indicative of an intrinsic cosmological origin for
these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated
postscript figures
Stellar and Molecular Gas Kinematics of NGC1097: Inflow Driven by a Nuclear Spiral
We present spatially resolved distributions and kinematics of the stars and
molecular gas in the central 320pc of NGC1097. The stellar continuum confirms
the previously reported 3-arm spiral pattern extending into the central 100pc.
The stellar kinematics and the gas distribution imply this is a shadowing
effect due to extinction by gas and dust in the molecular spiral arms. The
molecular gas kinematics show a strong residual (i.e. non-circular) velocity,
which is manifested as a 2-arm kinematic spiral. Linear models indicate that
this is the line-of-sight velocity pattern expected for a density wave in gas
that generates a 3-arm spiral morphology. We estimate the inflow rate along the
arms. Using hydrodynamical models of nuclear spirals, we show that when
deriving the accretion rate into the central region, outflow in the disk plane
between the arms has to be taken into account. For NGC1097, despite the inflow
rate along the arms being ~1.2Msun/yr, the net gas accretion rate to the
central few tens of parsecs is much smaller. The numerical models indicate that
the inflow rate could be as little as ~0.06Msun/yr. This is sufficient to
generate recurring starbursts, similar in scale to that observed, every
20-150Myr. The nuclear spiral represents a mechanism that can feed gas into the
central parsecs of the galaxy, with the gas flow sustainable for timescales of
a Gigayear.Comment: accepted by Ap
The Energy-Momentum Tensor in Fulling-Rindler Vacuum
The energy density in Fulling-Rindler vacuum, which is known to be negative
"everywhere" is shown to be positive and singular on the horizons in such a
fashion as to guarantee the positivity of the total energy. The mechanism of
compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9
The most massive galaxies in clusters are already fully grown at
By constructing scaling relations for galaxies in the massive cluster
MACSJ0717.5 at and comparing with those of Coma, we model the
luminosity evolution of the stellar populations and the structural evolution of
the galaxies. We calculate magnitudes, surface brightnesses and effective radii
using HST/ACS images and velocity dispersions using Gemini/GMOS spectra, and
present a catalogue of our measurements for 17 galaxies. We also generate
photometric catalogues for galaxies from the HST imaging. With
these, we construct the colour-magnitude relation, the fundamental plane, the
mass-to-light versus mass relation, the mass-size relation and the
mass-velocity dispersion relation for both clusters. We present a new, coherent
way of modelling these scaling relations simultaneously using a simple physical
model in order to infer the evolution in luminosity, size and velocity
dispersion as a function of redshift, and show that the data can be fully
accounted for with this model. We find that (a) the evolution in size and
velocity dispersion undergone by these galaxies between and is mild, with and , and (b) the stellar populations are old, Gyr,
with a Gyr dispersion in age, and are consistent with evolving purely
passively since with . The implication is that these galaxies formed their stars early and
subsequently grew dissipationlessly so as to have their mass already in place
by , and suggests a dominant role for dry mergers, which may have
accelerated the growth in these high-density cluster environments.Comment: 20 pages; accepted for publication in MNRA
The Sun in transition? Persistence of near-surface structural changes through Cycle 24
We examine the frequency shifts in low-degree helioseismic modes from the
Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 -
2016, and compare them with a number of global activity proxies well as a
latitudinally-resolved magnetic index. As well as looking at frequency shifts
in different frequency bands, we look at a parametrization of the shift as a
cubic function of frequency. While the shifts in the medium- and highfrequency
bands are very well correlated with all of the activity indices (with the best
correlation being with the 10.7 cm radio flux), we confirm earlier findings
that there appears to have been a change in the frequency response to activity
during solar cycle 23, and the low frequency shifts are less correlated with
activity in the last two cycles than they were in Cycle 22. At the same time,
the more recent cycles show a slight increase in their sensitivity to activity
levels at medium and higher frequencies, perhaps because a greater proportion
of activity is composed of weaker or more ephemeral regions. This lends weight
to the speculation that a fundamental change in the nature of the solar dynamo
may be in progress.Comment: 9 pages, 6 figures. Accepted by MNRAS 24 May 201
Progress in materials and structures at Lewis Research Center
The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed
- …