2,245 research outputs found

    Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus

    Get PDF
    Cerium oxide nanoparticles (nCeO_{2}) are used at an ever-increasing rate, however, their impact within the aquatic environment remains uncertain. Here, we expose the ecologically significant marine cyanobacterium Prochlorococcus sp. MED4 to nCeO_{2} at a wide range of concentrations (1 μg L^{–1} to 100 mg L^{–1}) under simulated natural and nutrient rich growth conditions. Flow cytometric analysis of cyanobacterial populations displays the potential of nCeO_{2} (100 μg L^{–1}) to significantly reduce Prochlorococcus cell density in the short-term (72 h) by up to 68.8% under environmentally relevant conditions. However, following longer exposure (240 h) cyanobacterial populations are observed to recover under simulated natural conditions. In contrast, cell-dense cultures grown under optimal conditions appear more sensitive to exposure during extended incubation, likely as a result of increased rate of encounter between cyanobacteria and nanoparticles at high cell densities. Exposure to supra-environmental nCeO_{2} concentrations (i.e., 100 mg L^{–1}) resulted in significant declines in cell density up to 95.7 and 82.7% in natural oligotrophic seawater and nutrient enriched media, respectively. Observed cell decline is associated with extensive aggregation behaviour of nCeO_{2} upon entry into natural seawater, as observed by dynamic light scattering (DLS), and hetero-aggregation with cyanobacteria, confirmed by fluorescent microscopy. Hence, the reduction of planktonic cells is believed to result from physical removal due to co-aggregation and co-sedimentation with nCeO_{2} rather than by a toxicological and cell death effect. The observed recovery of the cyanobacterial population under simulated natural conditions, and likely reduction in nCeO_{2} bioavailability as nanoparticles aggregate and undergo sedimentation in saline media, means that the likely environmental risk of nCeO_{2} in the marine environment appears low

    Promoting healthy weight in primary school children through physical activity and nutrition education: a pragmatic evaluation of the CHANGE! randomised intervention study

    Get PDF
    Background: This pragmatic evaluation investigated the effectiveness of the Children’s Health, Activity and Nutrition: Get Educated! (CHANGE!) Project, a cluster randomised intervention to promote healthy weight using an educational focus on physical activity and healthy eating. Methods: Participants (n = 318, aged 10–11 years) from 6 Intervention and 6 Comparison schools took part in the 20 weeks intervention between November 2010 and March/April 2011. This consisted of a teacher-led curriculum, learning resources, and homework tasks. Primary outcome measures were waist circumference, body mass index (BMI), and BMI z-scores. Secondary outcomes were objectively-assessed physical activity and sedentary time, and food intake. Outcomes were assessed at baseline, at post-intervention (20 weeks), and at follow-up (30 weeks). Data were analysed using 2-level multi-level modelling (levels: school, student) and adjusted for baseline values of the outcomes and potential confounders. Differences in intervention effect by subgroup (sex, weight status, socio-economic status) were explored using statistical interaction. Results: Significant between-group effects were observed for waist circumference at post-intervention (β for intervention effect =−1.63 (95% CI = −2.20, -1.07) cm, p<0.001) and for BMI z-score at follow-up (β=−0.24 (95% CI = −0.48, -0.003), p=0.04). At follow-up there was also a significant intervention effect for light intensity physical activity (β=25.97 (95% CI = 8.04, 43.89) min, p=0.01). Interaction analyses revealed that the intervention was most effective for overweight/obese participants (waist circumference: β=−2.82 (95% CI = −4.06, -1.58) cm, p<0.001), girls (BMI: β=−0.39 (95% CI = −0.81, 0.03) kg/m2, p=0.07), and participants with higher family socioeconomic status (breakfast consumption: β=8.82 (95% CI = 6.47, 11.16), p=0.07). Conclusions: The CHANGE! intervention positively influenced body size outcomes and light physical activity, and most effectively influenced body size outcomes among overweight and obese children and girls. The findings add support for the effectiveness of combined school-based physical activity and nutrition interventions. Additional work is required to test intervention fidelity and the sustained effectiveness of this intervention in the medium and long term

    Delusional beliefs and reason giving

    Get PDF
    Delusions are often regarded as irrational beliefs, but their irrationality is not sufficient to explain what is pathological about them. In this paper we ask whether deluded subjects have the capacity to support the content of their delusions with reasons, that is, whether they can author their delusional states. The hypothesis that delusions are characterised by a failure of authorship, which is a dimension of self knowledge, deserves to be empirically tested because (a) it has the potential to account for the distinction between endorsing a delusion and endorsing a framework belief; (b) it contributes to a philosophical analysis of the relationship between rationality and self knowledge; and (c) it informs diagnosis and therapy in clinical psychiatry. However, authorship cannot provide a demarcation criterion between delusions and other irrational belief states

    Temperature-modulated solution-based synthesis of copper oxide nanostructures for glucose sensing

    Get PDF
    Glucose sensors are widely applied in society as an effective way to diagnose and control diabetes by monitoring the blood glucose level. With advantages in stability and efficiency in glucose detection, non-enzymatic glucose sensors are gradually replacing their enzymatic counterparts and copper(ii) oxide (CuO) is a leading material. However, previous work extensively shows that even if the synthesis of CuO nanostructures is performed under nominally similar conditions, entirely different nanostructured products are obtained, resulting in varying physical and chemical properties of the final product, thereby leading to a differing performance in glucose detection. This work investigates the temperature dependence of a wet chemical precipitation synthesis for CuO nanostructures with the resulting samples showing selectivity for glucose in electrochemical tests. X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) demonstrate that all products are predominantly CuO, with some contribution from Cu(OH)2 and other surface species varying across synthesis temperatures. The most important change with increasing synthesis temperature is that the overall nanostructure size changes and the morphology shifts from nanoneedles to nanoparticles between 65 and 70 °C. This work helps to understand the critical relationship between synthesis temperature and final nanostructure and can explain the seemingly random nanostructures observed in the literature. The variations are key to controlling sensor performance and ultimately offering further development in copper oxide-based glucose sensors

    Wetlands In a Changing Climate: Science, Policy and Management

    Get PDF
    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services

    James Hutton’s geological tours of Scotland : romanticism, literary strategies, and the scientific quest

    Get PDF
    This article explores a somewhat neglected part of the story of the emergence of geology as a science and discourse in the late eighteenth century – James Hutton’s posthumously published accounts of the geological tours of Scotland that he undertook in the years 1785 to 1788 in search of empirical evidence in support of his theory of the Earth and that he intended to include in the projected third volume of his Theory of the Earth of 1795. The article brings some of the assumptions and techniques of literary criticism to bear on Hutton’s scientific travel writing in order to open up new connections between geology, Romantic aesthetics and eighteenth-century travel writing about Scotland. Close analysis of Hutton’s accounts of his field trips to Glen Tilt, Galloway and Arran, supplemented by later accounts of the discoveries at Jedburgh and Siccar Point, reveals the interplay between desire, travel and the scientific quest and foregrounds the textual strategies that Hutton uses to persuade his readers that they share in the experience of geological discovery and interpretation as ‘virtual witnesses’. As well as allowing us to revisit the interrelation between scientific theory and discovery, this article concludes that Hutton was a much better writer than he has been given credit for and suggests that if these geological tours had been published in 1795 they would have made it impossible for critics to dismiss him as an armchair geologist

    Determining the best method for first-line assessment of neonatal blood glucose levels

    Get PDF
    Objective: To evaluate and compare the accuracy and performance of two electrochemical glucose meters. To determine the user acceptability of these glucose meters and the ABL 620 Blood Gas Analyser (Radiometer, Copenhagen, Denmark) with an electrochemical glucose oxidase electrode for use in a Level 2 special care baby unit

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
    corecore