11,781 research outputs found
The eta-photon transition form factor
The eta-photon transition form factor is evaluated in a formalism based on a
phenomenological description at low values of the photon virtuality, and a
QCD-based description at high photon virtualities, matching at a scale
. The high photon virtuality description makes use of a Distribution
Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars
regularization at the matching scale , and QCD evolution from
to higher values of . A good description of the available
data is obtained. The analysis indicates that the recent data from the BaBar
collaboration on pion and eta transition form factor can be well reproduced, if
a small contribution of twist three at the matching scale is
included.Comment: 14 pages, 3 figures, revised version, minor corrections, references
added, conclusions unchanged. Accepted for publication in Phys. Rev.
Scotland, Catalonia and the “right” to self-determination: a comment suggested by Kathryn Crameri’s “Do Catalans Have the Right to Decide?
No abstract available
Photoionization and Photoelectric Loading of Barium Ion Traps
Simple and effective techniques for loading barium ions into linear Paul
traps are demonstrated. Two-step photoionization of neutral barium is achieved
using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by
excitation above the ionization threshold using a nitrogen gas laser (337 nm).
Isotopic selectivity is achieved by using a near Doppler-free geometry for
excitation of the triplet 6s6p 3P1 state. Additionally, we report a
particularly simple and efficient trap loading technique that employs an
in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3
caption -added reference [15
Whispering Vortices
Experiments indicating the excitation of whispering gallery type
electromagnetic modes by a vortex moving in an annular Josephson junction are
reported. At relativistic velocities the Josephson vortex interacts with the
modes of the superconducting stripline resonator giving rise to novel
resonances on the current-voltage characteristic of the junction. The
experimental data are in good agreement with analysis and numerical
calculations based on the two-dimensional sine--Gordon model.Comment: 5 pages, 5 figures, text shortened to fit 4 pages, correction of
typo
Recommended from our members
Amygdalar function reflects common individual differences in emotion and pain regulation success
Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Out results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes
Preliminary report on IUE spectra of the Crab Nebula
The Crab Nebula is marginally observable with the IUE. Observations of the optically brightest filamentary regions, made with IUE in August 1979, show the C IV lambda 1549, He II lambda 1640, and C III lambda 1909 emission lines. The intensities of these lines were compared with the visual wavelength data. It appears that carbon is not overabundant in the Crab; carbon/oxygen is approximately normal and oxygen is slightly scarcer than normal as a fraction of the total mass
Experiments on wave turbulence : the evolution and growth of second sound acoustic turbulence in superfluid 4He confirm self-similarity.
We report our experiments on the formation of second sound acoustic turbulence in superfluid 4He. The initial growth in spectral amplitude follows power laws that steepen rapidly with increasing harmonic number n, corresponding to a propagating front in frequency space. The lower growth exponents agree well with analytic predictions and numerical modeling. The observed increase in the formation delay with n validates the concept of selfsimilarity in the growth of wave turbulence
Nuclear Antishadowing in Neutrino Deep Inelastic Scattering
The shadowing and antishadowing of nuclear structure functions in the
Gribov-Glauber picture is due respectively to the destructive and constructive
interference of amplitudes arising from the multiple-scattering of quarks in
the nucleus. The effective quark-nucleon scattering amplitude includes Pomeron
and Odderon contributions from multi-gluon exchange as well as Reggeon
quark-exchange contributions. We show that the coherence of these
multiscattering nuclear processes leads to shadowing and antishadowing of the
electromagnetic nuclear structure functions in agreement with measurements.
This picture leads to substantially different antishadowing for charged and
neutral current reactions, thus affecting the extraction of the weak-mixing
angle . We find that part of the anomalous NuTeV result for
could be due to the nonuniversality of nuclear antishadowing for
charged and neutral currents. Detailed measurements of the nuclear dependence
of individual quark structure functions are thus needed to establish the
distinctive phenomenology of shadowing and antishadowing and to make the NuTeV
results definitive.Comment: 38 pages, 15 figure
Analysis and optimization of a free-electron laser with an irregular waveguide
Using a time-dependent approach the analysis and optimization of a planar
FEL-amplifier with an axial magnetic field and an irregular waveguide is
performed. By applying methods of nonlinear dynamics three-dimensional
equations of motion and the excitation equation are partly integrated in an
analytical way. As a result, a self-consistent reduced model of the FEL is
built in special phase space. The reduced model is the generalization of the
Colson-Bonifacio model and takes into account the intricate dynamics of
electrons in the pump magnetic field and the intramode scattering in the
irregular waveguide. The reduced model and concepts of evolutionary computation
are used to find optimal waveguide profiles. The numerical simulation of the
original non-simplified model is performed to check the effectiveness of found
optimal profiles. The FEL parameters are chosen to be close to the parameters
of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p.
750), in which a sheet electron beam with the moderate thickness interacts with
the TE01 mode of a rectangular waveguide. The results strongly indicate that
one can improve the efficiency by a factor of five or six if the FEL operates
in the magnetoresonance regime and if the irregular waveguide with the
optimized profile is used
An analog of Heisenberg uncertainty relation in prequantum classical field theory
Prequantum classical statistical field theory (PCSFT) is a model which
provides a possibility to represent averages of quantum observables, including
correlations of observables on subsystems of a composite system, as averages
with respect to fluctuations of classical random fields. PCSFT is a classical
model of the wave type. For example, "electron" is described by electronic
field. In contrast to QM, this field is a real physical field and not a field
of probabilities. An important point is that the prequantum field of e.g.
electron contains the irreducible contribution of the background field, vacuum
fluctuations. In principle, the traditional QM-formalism can be considered as a
special regularization procedure: subtraction of averages with respect to
vacuum fluctuations. In this paper we derive a classical analog of the
Heisenberg-Robertson inequality for dispersions of functionals of classical
(prequantum) fields. PCSFT Robertson-like inequality provides a restriction on
the product of classical dispersions. However, this restriction is not so rigid
as in QM. The quantum dispersion corresponds to the difference between e.g. the
electron field dispersion and the dispersion of vacuum fluctuations. Classical
Robertson-like inequality contains these differences. Hence, it does not imply
such a rigid estimate from below for dispersions as it was done in QM
- …