372 research outputs found

    Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes

    Get PDF
    Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor

    Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes

    Get PDF
    Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor

    Crossing the `Yellow Void' -- Spatially Resolved Spectroscopy of the Post- Red Supergiant IRC+10420 and Its Circumstellar Ejecta

    Full text link
    IRC +10420 is one of the extreme hypergiant stars that define the empirical upper luminosity boundary in the HR diagram. During their post--RSG evolution, these massive stars enter a temperature range (6000-9000 K) of increased dynamical instability, high mass loss, and increasing opacity, a semi--forbidden region, that de Jager and his collaborators have called the `yellow void'. We report HST/STIS spatially resolved spectroscopy of IRC +10420 and its reflection nebula with some surprising results. Long slit spectroscopy of the reflected spectrum allows us to effectively view the star from different directions. Measurements of the double--peaked Halpha emission profile show a uniform outflow of gas in a nearly spherical distribution, contrary to previous models with an equatorial disk or bipolar outflow. Based on the temperature and mass loss rate estimates that are usually quoted for this object, the wind is optically thick to the continuum at some and possibly all wavelengths. Consequently the observed variations in apparent spectral type and inferred temperature are changes in the wind and do not necessarily mean that the underlying stellar radius and interior structure are evolving on such a short timescale. To explain the evidence for simultaneous outflow and infall of material near the star, we propose a `rain' model in which blobs of gas condense in regions of lowered opacity outside the dense wind. With the apparent warming of its wind, the recent appearance of strong emission, and a decline in the mass loss rate, IRC +10420 may be about to shed its opaque wind, cross the `yellow void', and emerge as a hotter star.Comment: To appear in the Astronomical Journal, August 200

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    The UV Scattering Halo of the Central Source Associated with Eta Carinae

    Full text link
    We have made an extensive study of the UV spectrum of Eta Carinae, and find that we do not directly observe the star and its wind in the UV. Because of dust along our line of sight, the UV light that we observe arises from bound-bound scattering at large impact parameters. We obtain a reasonable fit to the UV spectrum by using only the flux that originates outside 0.033". This explains why we can still observe the primary star in the UV despite the large optical extinction -- it is due to the presence of an intrinsic coronagraph in the Eta Carinae system, and to the extension of the UV emitting region. It is not due to peculiar dust properties alone. We have computed the spectrum of the purported companion star, and show that it could only be directly detected in the UV spectrum preferentially in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectral region (912-1175 Ang.). However, we find no direct evidence for a companion star, with the properties indicated by X-ray studies and studies of the Weigelt blobs, in UV spectra. This might be due to reprocessing of the companion's light by the dense stellar wind of the primary. Broad FeII and [FeII] emission lines, which form in the stellar wind, are detected in spectra taken in the SE lobe, 0.2" from the central star. The wind spectrum shows some similarities to the spectra of the B & D Weigelt blobs, but also shows some marked differences in that high excitation lines, and lines pumped by Ly-alpha, are not seen. The detection of the broad lines lends support to our interpretation of the UV spectrum, and to our model for Eta Carinae.Comment: To appear in ApJ. 57 pages with 18 figure

    Numerical models of collisions between core-collapse supernovae and circumstellar shells

    Get PDF
    Recent observations of luminous Type IIn supernovae (SNe) provide compelling evidence that massive circumstellar shells surround their progenitors. In this paper we investigate how the properties of such shells influence the SN lightcurve by conducting numerical simulations of the interaction between an expanding SN and a circumstellar shell ejected a few years prior to core collapse. Our parameter study explores how the emergent luminosity depends on a range of circumstellar shell masses, velocities, geometries, and wind mass-loss rates, as well as variations in the SN mass and energy. We find that the shell mass is the most important parameter, in the sense that higher shell masses (or higher ratios of M_shell/M_SN) lead to higher peak luminosities and higher efficiencies in converting shock energy into visual light. Lower mass shells can also cause high peak luminosities if the shell is slow or if the SN ejecta are very fast, but only for a short time. Sustaining a high luminosity for durations of more than 100 days requires massive circumstellar shells of order 10 M_sun or more. This reaffirms previous comparisons between pre-SN shells and shells produced by giant eruptions of luminous blue variables (LBVs), although the physical mechanism responsible for these outbursts remains uncertain. The lightcurve shape and observed shell velocity can help diagnose the approximate size and density of the circumstellar shell, and it may be possible to distinguish between spherical and bipolar shells with multi-wavelength lightcurves. These models are merely illustrative. One can, of course, achieve even higher luminosities and longer duration light curves from interaction by increasing the explosion energy and shell mass beyond values adopted here.Comment: Accepted for publication in MNRAS. Tables of numerical results (SN lightcurves and velocities) to be published online. (Updated to fix figures

    The Structure of the Homunculus. II. Modeling the physical conditions in Eta Car's molecular shell

    Get PDF
    We present models that reproduce the observed double-shell structure of the Homunculus Nebula around eta Carinae, including the stratification of infrared H2 and [FeII] emission seen in data obtained with the Phoenix spectrograph on Gemini South, as well as the corresponding stratified grain temperature seen in thermal-infrared data. Tuning the model to match the observed shell thickness allows us to determine the threshold density which permits survival of H2. An average hydrogen density of n_H=(0.5-1)x10^7 cm-3 in the outer zone is required to allow H2 to exist at all latitudes in the nebula, and for Fe+ to recombine. This gives independent confirmation of the very large mass of the Homunculus, indicating a total of roughly 15--35 Msun (although we note reasons why the lower end of this range is favored). At the interface between the atomic and molecular zones, we predict a sharp drop in the dust temperature, in agreement with the bimodal dust color temperatures observed in the two zones. In the outer molecular shell, the dust temperature drops to nearly the blackbody temperature, and becomes independent of grain size because of self-shielding at shorter UV wavelengths and increased heating at longer wavelengths. This relaxes constraints on large grain sizes suggested by near-blackbody color temperatures. Finally, from the strength of infrared [FeII] emission in the inner shell we find that the gas-phase Fe abundance is roughly solar. This is astonishing in such a dusty object, where one normally expects gaseous iron to be depleted by two orders of magnitude.Comment: 18 pages, 5 figures. Accepted by Ap
    • 

    corecore