982 research outputs found

    Shear behaviour of reinforced masonry: efficacy of FRP versus traditional technique

    Get PDF
    The aim of this experimental work is to analyse and compare the shear resistance decay after long-term and environmental actions on brickworks structures reinforced by innova-tive (FRP) and traditional technique (strengthening mortar). Laboratory tests were carried out at the Non-Destructive Testing Laboratory of the Politecnico of Turin: ad hoc brickwork speci-mens were manufactured and reinforced by FRP and strengthening mortar (for jacketing walls). Test pieces were subjected both to static and to cyclic loading tests and to freezing-thawing thermo-hygrometric tests, in order to study durability and efficacy of strengthening techniques, and express a judgement on their long term compatibility with historical masonry, thereby avoiding the errors associated with materials that are not mechanically compatible

    Acoustic Emission Monitoring of the Turin Cathedral Bell Tower: Foreshock and Aftershock Discrimination

    Get PDF
    Historical churches, tall ancient masonry buildings, and bell towers are structures subjected to high risks due to their age, elevation, and small base-area-to-height ratio. In this paper, the results of an innovative monitoring technique for structural integrity assessment applied to a historical bell tower are reported. The emblematic case study of the monitoring of the Turin Cathedral bell tower (northwest Italy) is herein presented. First of all, the damage evolution in a portion of the structure localized in the lower levels of the tall masonry building is described by the evaluation of the cumulative number of acoustic emissions (AEs) and by different parameters able to predict the time dependence of the damage development, in addition to the 3D localization of the AE sources. The b-value analysis shows a decreasing trend down to values compatible with the growth of localized micro and macro-cracks in the portion of the structure close to the base of the tower. These results seem to be in good agreement with the static and dynamic analysis performed numerically by an accurate FEM (finite element model). Similar results were also obtained during the application of the AE monitoring to the wooden frame sustaining the bells in the tower cell. Finally, a statistical analysis based on the average values of the b-value are carried out at the scale of the monument and at the seismic regional scale. In particular, according to recent studies, a comparison between the b-value obtained by AE signal analysis and the regional activity is proposed in order to correlate the AE detected on the structure to the seismic activity, discriminating foreshock, and aftershock intervals in the analyzed time series

    A Decision Support System for Supporting Strategic Production Allocation in the Automotive Industry

    Get PDF
    This paper deals with the optimization problem faced by the manufacturing engineering department of an international automotive company, concerning its supply chain design (i.e., decisions regarding which plants to open, how many components to produce, and the logistic flow from production to assembly plants). The intrinsic characteristics of the problem, such as stochasticity, the high number of products and components, and exogenous factors, make it complex to formulate and solve the mathematical models. Thus, new decision support systems integrating human choices and fast solution algorithms are needed. In this paper, we present an innovative and successful use case of such an approach, encompassing the decision-maker as an integral part of the optimization process. Moreover, the proposed approach allows the managers to conduct what-if analyses in real-time, taking robust decisions with respect to future scenarios, while shortening the time needed. As a byproduct, the proposed methodology requires neither the definition of a probability distribution nor the investigation of the user’s risk aversion

    Fatigue Performance Analysis of an Existing Orthotropic Steel Deck (OSD) Bridge

    Get PDF
    Orthotropic steel deck (OSD) bridges are lightweight constructions which are convenient, especially for the achievement of long spans. Conversely, due to the stress concentration in correspondence to the numerous and unavoidable welded construction details, this bridge typology is prone to fatigue cracking under the effect of cyclic loading with high-stress amplitudes. Existing OSD bridges are particularly vulnerable to fatigue damage accumulation because of the dated standards adopted at the time of their design and the fact that heavy lorries have increased in travel frequency and weight. In the present paper, a case study of a northern Italian existing highway viaduct, built in the 1990s, is presented and analyzed. The fatigue damage accumulation was carried out according to the fatigue load models for road bridges reported in Eurocode EN 1991-2 and the assessment criteria indicated in EN 1993-1-9. The stress amplitude, in correspondence to the critical details of the bridge, is assessed by means of detailed finite-element calculations carried out with the software MIDAS GEN (R). The amplitude and frequency of the travelling weights are assessed based on real traffic monitoring from the highway. Moreover, an automatic "rain-flow" algorithm is implemented, which is able to detect each nominal stress variation above the fatigue limit. In general, the bridge is not fully compliant with today's standards when considering the entire duration of the prescribed life of the design. Countermeasures, like lane number reductions and lane reshaping, are critically analyzed since their effectiveness is questionable as far as the reduction in heavy traffic is concerned. Other interventions, like the replacement of the pavement in order to improve the stress redistribution upon the connection details below the wheel footprint, and continuous bridge inspections or monitoring, look more promising

    SwiftTron: An Efficient Hardware Accelerator for Quantized Transformers

    Full text link
    Transformers' compute-intensive operations pose enormous challenges for their deployment in resource-constrained EdgeAI / tinyML devices. As an established neural network compression technique, quantization reduces the hardware computational and memory resources. In particular, fixed-point quantization is desirable to ease the computations using lightweight blocks, like adders and multipliers, of the underlying hardware. However, deploying fully-quantized Transformers on existing general-purpose hardware, generic AI accelerators, or specialized architectures for Transformers with floating-point units might be infeasible and/or inefficient. Towards this, we propose SwiftTron, an efficient specialized hardware accelerator designed for Quantized Transformers. SwiftTron supports the execution of different types of Transformers' operations (like Attention, Softmax, GELU, and Layer Normalization) and accounts for diverse scaling factors to perform correct computations. We synthesize the complete SwiftTron architecture in a 6565 nm CMOS technology with the ASIC design flow. Our Accelerator executes the RoBERTa-base model in 1.83 ns, while consuming 33.64 mW power, and occupying an area of 273 mm^2. To ease the reproducibility, the RTL of our SwiftTron architecture is released at https://github.com/albertomarchisio/SwiftTron.Comment: To appear at the 2023 International Joint Conference on Neural Networks (IJCNN), Queensland, Australia, June 202

    EFFECT OF WIND LOADS ON NON REGULARLY SHAPED HIGH-RISE BUILDINGS

    Get PDF
    Wind loads have historically been recognized as one of the most important issue in high-rise buildings analysis and design. In particular, in regions of low seismic intensity, a high-rise building lateral design is controlled by wind loads. In wind analysis, Computational Fluid Dynamics (CFD) and/or wind tunnel testing are required to calculate the external pressures acting on a building. In this paper, two case studies are presented to show how the wind loads are calculated and applied in design. The first case study is based on the CFD results for the New Marina Casablanca Tower in Casablanca, Morocco. The second case study considers the results from the wind tunnel test studies conducted for the Al- Hamra tower, in Kuwait City, Kuwait. The New Marina Casablanca tower is a 167m tall concrete building, with a unique twisting shape generated from the relative rotation of two adjacent floors. Sloped columns are introduced in the perimeter to follow the tower outer geometry and to support the concrete slabs spanning between the central core and the perimeter frame. The effects of wind loads on the twisted geometry has been studied in details since the pressure coefficients are not easily identified for such a complex form. In addition, the effect of the wind loads on the structure presented unique challenges that required innovative structural solutions. The Al-Hamra tower is a 412m tall concrete building with a sculpted twisting form which optimizes the views to the Arabian Gulf while minimizing the solar heat gain. The complex form is realized using sloped walls and vertical columns on the perimeter and a central concrete core. The unique shape of the tower presented several design challenges related to the wind loads on the structure. This paper will discuss the unique challenges and solutions associated with wind loads effect on buildings of unique form

    Reinforced masonry with FRP and structural mortar: durability evaluation by AE technique

    Get PDF
    The aim of this work is to analyse and compare the shear resistance after long-term and environmental actions on brickwork structures reinforced by innovative or traditional techniques. To this end laboratory tests were carried out at the Non-Destructive Testing Labora-tory of the Politecnico di Torino. In addition, the Acoustic Emission technique was employed to assess the damage localization, and the mechanical properties decay in order to evaluate the ef-fectiveness of these rehabilitation methodologies

    D21.3 Analysis of initial results at EuWIN@CTTC

    Get PDF
    Deliverable D21.3 del projecte europeu NEWCOM#The nature of this Deliverable of WP2.1 (“Radio interfaces for next-generation wireless systems”) is mainly descriptive and its purpose is to provide a report on the status of the different Joint Research Activities (JRAs) currently ongoing, some of them being performed on the facilities that are available at EuWInPeer ReviewedPreprin

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF
    • 

    corecore