38 research outputs found

    Cell shape characteristics of human skeletal muscle cells as a predictor of myogenic competency: A new paradigm towards precision cell therapy

    Get PDF
    Skeletal muscle-derived cells (SMDC) hold tremendous potential for replenishing dysfunctional muscle lost due to disease or trauma. Current therapeutic usage of SMDC relies on harvesting autologous cells from muscle biopsies that are subsequently expanded in vitro before re-implantation into the patient. Heterogeneity can arise from multiple factors including quality of the starting biopsy, age and comorbidity affecting the processed SMDC. Quality attributes intended for clinical use often focus on minimum levels of myogenic cell marker expression. Such approaches do not evaluate the likelihood of SMDC to differentiate and form myofibres when implanted in vivo, which ultimately determines the likelihood of muscle regeneration. Predicting the therapeutic potency of SMDC in vitro prior to implantation is key to developing successful therapeutics in regenerative medicine and reducing implementation costs. Here, we report on the development of a novel SMDC profiling tool to examine populations of cells in vitro derived from different donors. We developed an image-based pipeline to quantify morphological features and extracted cell shape descriptors. We investigated whether these could predict heterogeneity in the formation of myotubes and correlate with the myogenic fusion index. Several of the early cell shape characteristics were found to negatively correlate with the fusion index. These included total area occupied by cells, area shape, bounding box area, compactness, equivalent diameter, minimum ferret diameter, minor axis length and perimeter of SMDC at 24 h after initiating culture. The information extracted with our approach indicates live cell imaging can detect a range of cell phenotypes based on cell-shape alone and preserving cell integrity could be used to predict propensity to form myotubes in vitro and functional tissue in vivo

    Modelling renal defects in Bardet-Biedl syndrome patients using human iPS cells

    Get PDF
    Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney

    Modelling renal defects in Bardet-Biedl syndrome patients using human iPS cells

    Get PDF
    Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney

    Imaging-Based Screen Identifies Laminin 411 as a Physiologically Relevant Niche Factor with Importance for i-Hep Applications.

    Get PDF
    Use of hepatocytes derived from induced pluripotent stem cells (i-Heps) is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA) of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI) for comparing the hepatic properties of cells against a physiological gold standard. The HLI was then applied in a targeted screen of extracellular niche factors to identify substrates driving i-Heps closer to the standard. Laminin 411, the top hit, was validated in two additional induced pluripotent stem cell (iPSC) lines, primary tissue, and an in vitro model of α1-antitrypsin deficiency. Cumulatively, these data provide a reference method to control and screen for i-Hep differentiation, identify Laminin 411 as a key niche protein, and underscore the importance of combining substrates, soluble factors, and HCA when developing iPSC applications

    Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors.

    Get PDF
    Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior

    A Genetic Screen for Anchorage-Independent Proliferation in Mammalian Cells Identifies a Membrane-Bound Neuregulin

    Get PDF
    Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT) are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF), a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy

    Common genetic variation drives molecular heterogeneity in human iPSCs.

    Get PDF
    Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells

    Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens

    Get PDF
    SummaryHuman brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from different tumors exhibit divergent gene expression signatures and differentiation behavior that correlate with specific neural progenitor subtypes. The diversity of gliomas may, therefore, reflect distinct cancer stem cell phenotypes. The purity and stability of adherent GNS cell lines offer significant advantages compared to “sphere” cultures, enabling refined studies of cancer stem cell behavior. A proof-of-principle live cell imaging-based chemical screen (450 FDA-approved drugs) identifies both differential sensitivities of GNS cells and a common susceptibility to perturbation of serotonin signaling

    CIL:42101, Homo sapiens, glioma stem cell. In Cell Image Library

    No full text
    corecore