23 research outputs found

    Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    Get PDF
    We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unido

    A model for CO₂ storage and seismic monitoring combining multiphase fluid flow and wave propagation simulators : The Sleipner-field case

    Get PDF
    The main objective of this paper is to use a flow simulator to represent the CO₂ storage and combine it with a wave propagation simulator in order to obtain synthetic seismograms qualitatively matching time-lapse real field data. The procedure is applied to the Utsira formation at Sleipner field. The field data at the site available to us is a collection of seismic sections (time-lapse seismics) used to monitor the CO₂ storage. An estimate of the CO₂ injection rate and the location of the injection point are known. Using these data, we build a geological model, including intramudstone layers with openings, whose coordinates are defined by performing a qualitative match of the field seismic data. The flow simulator parameters and the petrophysical properties are updated to obtain CO₂ saturation maps, including CO₂ plumes, so that the synthetic seismic images resemble the real data. The geological model is based on a porous-media constitutive equation. It considers a poroelastic description of the Utsira formation (a shaly sandstone), based on porosity and clay content, and takes into account the variation of the properties with pore pressure and fluid saturation. Moreover, the model considers the geometrical features of the formations, including the presence of shale seals and fractures. We also assume fractal variations of the petrophysical properties. The numerical simulation of the CO₂-brine flow is based on the Black-Oil formulation, which uses the pressure-volume-temperature (PVT) behavior as a simplified thermodynamic model. The corresponding equations are solved using a finite difference IMPES formulation. Using the resulting saturation and pore-pressure maps, we determine an equivalent viscoelastic medium at the macroscale, formulated in the space-frequency domain. Wave attenuation and velocity dispersion, caused by heterogeneities formed of gas patches, are described with White’s mesoscopic model. The viscoelastic wave equation is solved in the space-frequency domain for a collection of frequencies of interest using a finite-element iterative domain decomposition algorithm. The space-time solution is recovered by a discrete inverse Fourier transform, allowing us to obtain our synthetic seismograms. In the numerical examples, we determine a set of flow and petrophysical parameters allowing us to obtain synthetic seismograms resembling actual field data. In particular, this approach yields CO₂ accumulations below the mudstone layers and synthetic seismograms which successfully reproduce the typical pushdown effect.Facultad de Ciencias Astronómicas y Geofísica

    Improvement of neutrophil gelatinase-associated lipocalin sensitivity and specificity by two plasma measurements in predicting acute kidney injury after cardiac surgery

    Get PDF
    Introduction: Acute kidney injury (AKI) remains among the most severe complication after cardiac surgery. The aim of this study was to evaluate the neutrophil gelatinase-associated lipocalin (NGAL) as possible biomarker for the prediction of AKI in an adult cardiac population. Materials and methods: Sixty-nine consecutive patients who underwent cardiac surgeries in our hospital were prospectively evaluated. In the intensive care unit (ICU) NGAL was measured as a new biomarker of AKI besides serum creatinine (sCrea). Patients with at least two factors of AKI risk were selected and samples collected before the intervention and soon after the patient’s arrival in ICU. As reference standard, sCrea measurements and urine outputs were evaluated to define the clinical AKI. A Triage Meter for plasma NGAL fluorescence immunoassay was used. Results: Acute kidney injury occurred in 24 of the 69 patients (35%). Analysis of post-operative NGAL values demonstrated an AUC of 0.71, 95% CI (0.60 - 0.82) with a cut-off = 154 ng/mL (sensitivity = 76%, specificity = 59%). Moreover, NGAL after surgery had a good correlation with the AKI stage severity (P ≤ 0.001). Better diagnostic results were obtained with two consecutive tests: sensitivity 86% with a negative predictive value (NPV) of 87%. At 10-18 h after surgery sCrea measurement, as confirmatory test, allowed to reach a more sensitivity and specificity with a NPV of 96%. Conclusions: The assay results showed an improvement of NGAL diagnostic accuracy evaluating two tests. Consequently, NGAL may be useful for a timely treatment or for the AKI rule out in ICU patients

    Fast monostatic GPR modeling

    No full text
    We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century

    Q -anisotropy in finely-layered media

    Get PDF
    Finely-layered media behaves as a transversely isotropic medium at long wavelengths. If the constituent media are anelastic, Q-anisotropy is described by Postma averaging for two periodic layers and by Backus averaging for an stationary sequence of many layers. In order to test the theory, we perform numerical simulations of wave propagation in a periodic sequence of sandstone and limestone and compute the Q-factor of qP waves as a function of the propagation direction.Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, José Carlos. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Itali

    Circulating 16S RNA in Biofluids: Extracellular Vesicles as Mirrors of Human Microbiome?

    No full text
    The human body is inhabited by around 1013 microbes composing a multicomplex system, termed microbiota, which is strongly involved in the regulation and maintenance of homeostasis. Perturbations in microbiota composition can lead to dysbiosis, which has been associated with several human pathologies. The gold-standard method to explore microbial composition is next-generation sequencing, which involves the analysis of 16S rRNA, an indicator of the presence of specific microorganisms and the principal tool used in bacterial taxonomic classification. Indeed, the development of 16S RNA sequencing allows us to explore microbial composition in several environments and human body districts and fluids, since it has been detected in “germ-free” environments such as blood, plasma, and urine of diseased and healthy subjects. Recently, prokaryotes showed to generate extracellular vesicles, which are known to be responsible for shuttling different intracellular components such as proteins and nucleic acids (including 16S molecules) by protecting their cargo from degradation. These vesicles can be found in several human biofluids and can be exploited as tools for bacterial detection and identification. In this review, we examine the complex link between circulating 16S RNA molecules and bacteria-derived vesicles

    Seismic modeling to monitor CO2 geological storage: the Atzbach‐Schwanenstadt gas field

    No full text
    We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.Facultad de Ciencias Astronómicas y Geofísica

    Antimicrobial Resistance Patterns of <i>Enterobacter cloacae</i> and <i>Klebsiella aerogenes</i> Strains Isolated from Clinical Specimens: A Twenty-Year Surveillance Study

    No full text
    We retrospectively analyzed the antimicrobial data of Enterobacter spp. strains isolated from hospitalized subjects and outpatients over 20 years (2000–2019). A total of 2277 non-duplicate Enterobacter spp. isolates, 1037 from outpatients (45%) and 1240 from hospitalized subjects (55%), were retrieved. Most of samples are infections of the urinary tract. Considering Enterobacter aerogenes, now classified as Klebsiella aerogenes, and Enterobacter cloacae, representing more than 90% of all isolates, except for aminoglycosides and fluroquinolones, which showed significant antibiotic decreasing trends (p p > 0.05). Conversely, there was a significant increasing resistance trend for fosfomycin (p < 0.01), among both community and hospital-related subjects, most probably owing to uncontrolled and improper usage. Surveillance studies on antibiotic resistance at the local and regional level are required to detect new resistance mechanisms, reduce inappropriate antimicrobial consumption, and increase the focus on antimicrobial stewardship

    Sensitivity analysis from single-well ERT simulations to image CO2 migrations along wellbores

    Get PDF
    CO2 plume imaging is a required step in CO2 geological storage for both performance assessment and risk management purposes. This work has been performed in the frame of the CO2CARE project, its aim is to develop tools and methodologies to monitor CO2 migration and verify the long-term well integrity after site abandonment. The timely detection of an anomaly is essential to perform a suitable remediation. For this purpose, downhole tools are permanently installed, but it is important to check the resolution and efficiency of the adopted techniques. In particular, this study investigates the possibility of using electrical resistivity tomography (ERT) to image CO2 migrations around observation boreholes through a sensitivity study. © 2013 by The Society of Exploration Geophysicists.Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Grünhut Duenyas, Vivian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Osella, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin
    corecore