16 research outputs found

    The Pattern Speeds of NGC 3031, NGC 2366, and DDO 154 as Functions of Radius

    Full text link
    The pattern speeds of NGC 3031, NGC 2366, and DDO 154 are measured using a solution of the Tremaine-Weinberg equations derived in a previous paper. Four different data sets of NGC 3031 produce consistent results despite differences in angular resolution, spectral resolution, and sensitivities to structures on different scales. The results for NGC 3031 show that the pattern speed is more similar to the material speed than it is to the speed of a rigidly rotating pattern, and that there are no clear indications of unique corotation or Lindblad resonances. Unlike NGC 3031, the results for NGC 2366 and DDO 154 show clear departures from the material speed. The results for NGC 2366 and DDO 154 also show that the solution method can produce meaningful results that are simple to interpret even if there is not a coherent or well-defined pattern in the data. The angular resolution of a data set has the greatest affect on the results, especially for determining the radial behavior of the pattern speed, and whether there is a single, global pattern speed.Comment: Accepted for publication in The Astrophysical Journa

    Imaging studies of comets

    Get PDF
    The Joint Observatory for Cometary Research's (JOCR) historical mission has been to provide understanding of large-scale interactions between bright comets and solar wind using wide-angle (Schmidt) imagery and spacecraft data; in this pursuit the JOCR has excelled. The 16 inch Newtonian/Cassegrain telescope was upgraded to permit filtered, narrow-field charge coupled device (CCD) imaging of both bright and faint comets. Thus, the goal of obtaining narrow-band imagery of the near-nuclear region of bright comets was added to JOCR's original mission with emphasis on ionization processes and total gas production. A 300 mm lens/CCD system exists with 3 degree field of view (FOV) which uses comet filters; this system bridges the gap between the wide-field (8 x 10 deg) Schmidt plates and the several-arcmin. field of the 16 inch telescope. JOCR is located under dark skies on South Baldy Mountain (el. 10,600 ft.) near Socorro, NM, and is one of the last truly dark sites in the continental U.S

    Gas in merging galaxies

    Get PDF
    We present observations of the neutral hydrogen, ionized hydrogen, and starlight of galaxies chosen from the 'Toomre Sequence' of merging galaxies. This sequence is meant to represent the progressive stages of the merger of two disk galaxies into a single elliptical-like remnant. The galaxies in this study span the full range of this sequence. The stars and atomic gas are very differently distributed, with the stars more widely distributed at early stages, and the gas much more widely distributed at later stages. Large quantities of neutral gas are sent to large radii (greater than or approximately equal to 100 h(exp -1) kpc), and still persist even after the central remnant has relaxed to an r(sup 1/4) light profile. There are a few times 10(exp 9) solar masses h(exp -2) of both molecular and atomic gas in each of these systems. Throughout the different stages, about half of the total gas mass lies within the galaxies' optical bodies. The fraction of this mass that is in neutral hydrogen drops rapidly in the later stage mergers, suggesting that atomic gas is processed into molecular gas, stars, and hot gas during the merger and resulting starburst. Star formation occurs at all stages of the interaction, both within the tails and in the central bodies. In the early stages, the H(alpha) shows many arcs and plumes. In the late stages, there are large H 2 regions in the tails which are associated with large quantities of neutral hydrogen. There is always a very good correlation between optical, H(alpha), and H1 peaks, with N(sub H1) greater than or approximately equal 3 x 10(exp 20) cm(exp -2) at the location of the H2 regions in the tails

    Time-lapse CCD imagery of plasma-tail motions in Comet Austin

    Get PDF
    The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion

    The Shearing HI Spiral Pattern of NGC 1365

    Full text link
    The Tremaine-Weinberg equations are solved for a pattern speed that is allowed to vary with radius. The solution method transforms an integral equation for the pattern speed to a least squares problem with well established procedures for statistical analysis. The method applied to the HI spiral pattern of the barred, grand-design galaxy NGC 1365 produced convincing evidence for a radial dependence in the pattern speed. The pattern speed behaves approximately as 1/r, and is very similar to the material speed. There are no clear indications of corotation or Lindblad resonances. Tests show that the results are not selection biased, and that the method is not measuring the material speed. Other methods of solving the Tremaine-Weinberg equations for shearing patterns were found to produce results in agreement with those obtained using the current method. Previous estimates that relied on the assumptions of the density-wave interpretation of spiral structure are inconsistent with the results obtained using the current method. The results are consistent with spiral structure theories that allow for shearing patterns, and contradict fundamental assumptions in the density-wave interpretation that are often used for finding spiral arm pattern speeds. The spiral pattern is winding on a characteristic timescale of ~ 500 Myrs.Comment: Accepted for publication in The Astrophysical Journa

    VII Zw 403: H I structure in a blue compact dwarf galaxy

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyWe present optical (UBVJ), ultraviolet (FUV, NUV), and high-resolution atomic hydrogen (H I) observations of the nearby blue compact dwarf (BCD), VII Zw 403. We find that VII Zw 403 has a relatively high H I mass-to-light ratio for a BCD. The rotation velocity is nominally 10-15 km s(-1), but rises to similar to 20 km s(-1) after correction for the similar to 8-10 km s(-1) random motions present in the gas. The velocity field is complex, including a variation in the position angle of the major axis going from the northeast to the southwest parts of the galaxy. Our high-resolution Hi maps reveal structure in the central gas, including a large, low-density Hi depression or hole between the southern and northern halves of the galaxy, coincident with an unresolved X-ray source. Although interactions have been proposed as the triggering mechanism for the vigorous star formation occurring in BCDs, VII Zw 403 does not seem to have been tidally triggered by an external interaction, as we have found no nearby possible perturbers. It also does not appear to fall in the set of galaxies that exhibit a strong central mass density concentration, as its optical scale length is large in comparison to similar systems. However, there are some features that are compatible with an accretion event: optical/Hi axis misalignment, a change in position angle of the kinematic axis, and a complex velocity field.Peer reviewe

    A Test of the Standard Hypothesis for the Origin of the HI Holes in Holmberg II

    Get PDF
    The nearby irregular galaxy Holmberg II has been extensively mapped in HI using the Very Large Array (VLA), revealing intricate structure in its interstellar gas component (Puche et al. 1992). An analysis of these structures shows the neutral gas to contain a number of expanding HI holes. The formation of the HI holes has been attributed to multiple supernova events occurring within wind-blown shells around young, massive star clusters, with as many as 10-200 supernovae required to produce many of the holes. From the sizes and expansion velocities of the holes, Puche et al. assigned ages of ~10^7 to 10^8 years. If the supernova scenario for the formation of the HI holes is correct, it implies the existence of star clusters with a substantial population of late-B, A and F main sequence stars at the centers of the holes. Many of these clusters should be detectable in deep ground-based CCD images of the galaxy. In order to test the supernova hypothesis for the formation of the HI holes, we have obtained and analyzed deep broad-band BVR and narrow-band H-alpha images of Ho II. We compare the optical and HI data and search for evidence of the expected star clusters in and around the HI holes. We also use the HI data to constrain models of the expected remnant stellar population. We show that in several of the holes the observed upper limits for the remnant cluster brightness are strongly inconsistent with the SNe hypothesis described in Puche et al. Moreover, many of the HI holes are located in regions of very low optical surface brightness which show no indication of recent star formation. Here we present our findings and explore possible alternative explanations for the existence of the HI holes in Ho II, including the suggestion that some of the holes were produced by Gamma-ray burst events.Comment: 30 pages, including 6 tables and 3 images. To appear in Astron. Journal (June 1999

    Determining the extragalactic extinction law with SALT. II. Additional sample

    Full text link
    We present new results from an on-going programme to study the dust extragalactic extinction law in E/S0 galaxies with dust lanes with the Southern African Large Telescope (SALT) during its performance-verification phase. The wavelength dependence of the dust extinction for seven galaxies is derived in six spectral bands ranging from the near-ultraviolet atmospheric cutoff to the near-infrared. The derivation of an extinction law is performed by fitting model galaxies to the unextinguished parts of the image in each spectral band, and subtracting from these the actual images. We compare our results with the derived extinction law in the Galaxy and find them to run parallel to the Galactic extinction curve with a mean total-to-selective extinction value of 2.71+-0.43. We use total optical extinction values to estimate the dust mass for each galaxy, compare these with dust masses derived from IRAS measurements, and find them to range from 10^4 to 10^7 Solar masses. We study the case of the well-known dust-lane galaxy NGC2685 for which HST/WFPC2 data is available to test the dust distribution on different scales. Our results imply a scale-free dust distribution across the dust lanes, at least within ~1 arcsec (~60 pc) regions.Comment: 11 pages, 7 figures, 3 tables. Accepted for publication in MNRAS. R-band contour maps and B-R colour-index maps are low-resolution versions of those used in the MNRAS versio

    Little Things

    Get PDF
    We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey) that is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 Dwarf Irregular and 4 Blue Compact Dwarf galaxies that is centered around HI-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The HI-line data are characterized by high sensitivity (less than 1.1 mJy/beam per channel), high spectral resolution (less than or equal to 2.6 km/s), and high angular resolution (~6 arcseconds. The LITTLE THINGS sample contains dwarf galaxies that are relatively nearby (less than or equal to 10.3 Mpc; 6 arcseconds is less than or equal to 300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as HI map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the HI data we have GALEX UV and ground-based UBV and Halpha images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available on-line.Comment: In press in A

    High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment; A Prelude to an alpha-Omega Dynamo

    Full text link
    The Ω\Omega-phase of the liquid sodium α\alpha-Ω\Omega dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, Bϕ≃8×BrB_{\phi} \simeq 8\times B_r from the radial component of an applied poloidal magnetic field, BrB_r. This enhanced toroidal field is produced by rotational shear in stable Couette flow within liquid sodium at Rm≃120Rm \simeq 120. The small turbulence in stable Taylor-Couette flow is caused by Ekman flow where (δv/v)2∼10−3 (\delta v/v)^2 \sim 10^{-3} . This high Ω\Omega-gain in low turbulence flow contrasts with a smaller Ω\Omega-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays only a smaller diffusive role that enables magnetic flux linkage.Comment: 5 pages, 5 figures, submitted PRL revised version: add one author, minor typo'
    corecore