456 research outputs found

    Grain surface features of Apollo 17 orange and black glass

    Get PDF
    Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known that they contain surface coatings and material rich in volatile condensable phases including S, Zn, F, Cl, and many volatile metals. Meyer summarizes the voluminous published chemical data and calculates the volatile enrichment ratios for most of the surface condensates. In an attempt to more completely understand this enrichment of surface volatiles, we have searched for carbon and carbon-bearing phases on droplet surfaces. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDX) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light element detection and analysis (oxygen, nitrogen, and carbon). In addition, we have made fresh mounts using procedures which should minimize carbon contamination or extraneous carbon x-rays and have analyzed for carbon

    Remineralization Of Enamel Lesions Proximal To Dentin Cavitated Lesions Restored With Resin Modified Glass Ionomer In The Primary Dentition

    Get PDF
    Poster presentation of research proposal addressing: the evaluation of dental hard tissue remineralization proximal to glass ionomer restorations. It is hypothesized that glass ionomer used in class II restorations will provide significantly more bioavailable fluoride and hard tissue remineralization on the proximal surface of adjacent teeth as compared to the same restoration completed using resin composite materials.https://dune.une.edu/cdm_studpost/1001/thumbnail.jp

    Persistent Chemical Pollutants

    Get PDF
    A legacy of persistent pollutants is widely distributed in the environment, increasing the potential for exposure of wildlife and humans. This POSTnote sets out the challenge this posed for regulators, current regulatory approaches and some of the emerging issues

    Cholesterol Secosterol Aldehydes Induce Amyloidogenesis and Dysfunction of Wild-Type Tumor Protein p53

    Get PDF
    SummaryEpidemiologic and clinical evidence points to an increased risk for cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and -B (ALD), but not the polyunsaturated fatty acid (PUFA)-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo red dyes but cannot bind to a consensus DNA sequence. Treatment of lung carcinoma cells with KA and ALD leads to a loss of function of extracted p53, as determined by the analysis of extracted nuclear protein and in activation of p21. Our results uncover a plausible chemical link between inflammation and cancer and expand the already pivotal role of p53 dysfunction and cancer risk

    Geochemistry of and alteration phases in martian lherzolite Y-793605

    Get PDF
    We have done preliminary SEM characterization of alteration phases on an exterior and an interior chip of martian lherzolite Yamato-793605,and have performed instrumental and radiochemical neutron activation analyses of a glass-poor and a glass-rich interior sample of the rock for a suite of 31 major and trace elements. To date, we have identified silica (containing minor amounts of S, K, Fe, Al), K-Fe-sulfate (probably jarosite) and Fe-phosphate as alteration phases in Y-793605. Of these, the silica and K-Fe-sulfate are likely terrestrial weathering products. Other evidence of alteration consists of what appear to be partly decomposed Ca-phosphate grains, which were probably originally igneous grains. No carbonates or Ca-sulfates have been identified as yet, and none of the alteration phases we have identified are unambiguously of martian origin. Compositionally, Y-793605 is very similar to the other two martian lherzolites ALHA77005 and LEW 88516. Our sample of Y-793605 is lower in the incompatible lithophile trace elements, such as the REE, than the average of either ALHA77005 or LEW 88516,but is within the ranges of individual analyses for ALHA77005. Y-793605 is a partial cumulate like the other lherzolites, but our sample contained less of a trapped melt component

    Development of Life on Early Mars

    Get PDF
    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at ~3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable conditions are meet. Perhaps it could start in a very short interval during the first tens of millions of years after crustal formation. Even with impact-driven extinction events, such a short start-up time would allow life to restart multiple times until it persevered. If panspermia is considered, life could be introduced as soon as liquid surface water was present and could instantly thrive and spread

    Volcanic Coatings on Picritic Apollo 17 Glasses; Submicrometer-Deposits of Fe-CR-Metal

    Get PDF
    The purposes of our ongoing investigations of Apollo 15 green and Apollo 17 orange and black volcanic glasses are threefold: first, to increase our understanding of the volcanic origin of the glasses; second, to determine the nature of the coating materials deposited on the glasses during their cooling in the volcanic environment; and, third, to help determine the nature of the gases involved in the volcanic fire-fountaining that occurred at approximately 3.5 Ga on the moon. We are continuing studies of coatings on volcanic glasses using analytical techniques not available when these glasses were originally studied; these include high-resolution FE-TEM and X-ray mapping, along with other highly detailed methods including TEM electron diffraction analysis. Initial studies of Apollo 15 green volcanic glasses using the techniques described above revealed for the first time the presence of areas containing distinct layering of volcanic surface deposits. S was associated with some of the inner layer of metallic Fe but was absent from the outer layer. Zn was associated with S in some places in the inner layer. An example of a typical spherule used for this study is shown in Fig. 1. It is a black (quench-crystallized) bead from near the bottom of the 74001/2 double drive tube; black beads such as this one are essentially identical in composition to the orange (uncrystallized) beads of the 74001/2 core

    Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    Get PDF
    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve

    Life on Mars: Evidence from Martian Meteorites

    Get PDF
    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features
    corecore