39 research outputs found

    Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    Get PDF
    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle velocity and reduce bore erosion

    Preliminary Assessment of the Use of Heavy Gases in Two-Stage Light Gas Guns

    Get PDF
    This paper discusses ballistic range testing at muzzle velocities of 0.7 to 2.7 km/s. Herein, we review several techniques for achieving these velocities - starting with the single stage gas gun and the powder gun. These techniques can have velocity limitations, both on the high end and on the low end, very high powder breech pressures, incomplete and inconsistent powder burn and can send unburned powder grains downrange to confound impact data. To try to resolve these issues, it was decided to study the use of the two stage light gas gun operated with a heavier working gas than is normally used. This would have the effect of lowering the usual muzzle velocity range of the two-stage gun using hydrogen to cover the desired low velocity range. Preliminary results are presented from firings with two NASA guns. Twenty-five shots were made with helium and nine shots with argon. Muzzle velocities of 1.1 to 4 km/s were obtained with helium and velocities of 0.7 to 2.7 km/s were obtained with argon. Overall, the heavy gas technique appears quite promising, but more firings are needed to fill out the data base

    Further Validation of a CFD Code for Calculating the Performance of Two-Stage Light Gas Guns

    Get PDF
    Earlier validations of a higher-order Godunov code for modeling the performance of two-stage light gas guns are reviewed. These validation comparisons were made between code predictions and experimental data from the NASA Ames 1.5" and 0.28" guns and covered muzzle velocities of 6.5 to 7.2 km/s. In the present report, five more series of code validation comparisons involving experimental data from the Ames 0.22" (1.28" pump tube diameter), 0.28", 0.50", 1.00" and 1.50" guns are presented. The total muzzle velocity range of the validation data presented herein is 3 to 11.3 km/s. The agreement between the experimental data and CFD results is judged to be very good. Muzzle velocities were predicted within 0.35 km/s for 74% of the cases studied with maximum differences being 0.5 km/s and for 4 out of 50 cases, 0.5 - 0.7 km/s

    New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    Get PDF
    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations

    Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds

    Get PDF
    An extensive program to improve the operation of the Ames 16 Inch Shock Tunnel was carried out. This included reduction of driver slosh wave amplitudes and detonation risk by the use of premixed He/O2 gas, longer wait times between the last gas load and driver gas ignition, an improved gas loading sequence, the use of four instead of one ignition wire, and the use of lower ignition wire voltages. Successful operation of the tunnel at pressures of 2000-6000 psi and enthalpies up to 12,000 J/gm was achieved. A new diaphragm breaking technique, self break on the driver combustion pressure rise, was tested and found to produce clean breaks over the full pressure range of the tunnel. Improvements were made to the driver gas loading manifold and a preliminary design was made of a gas mixing system which mixes all three gases on the fly just before injection into the driver. Other improvements as well as tests are discussed

    Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds

    Get PDF
    The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code

    Shock Radiation Tests for Saturn and Uranus Entry Probes

    Get PDF
    This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11 by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 kms. No shock layer radiation is detected within measurement limits below 25 kms, a finding consistent with predictions for Uranus entries. Between 25-30 kms, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-a and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and in many cases the state distributions are non-Boltzmann. Radiation data are compared to simulations of Decadal Survey entries for Saturn and shown to be as much as 8x lower than predicted with the Boltzmann radiation model. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length

    Afterbody Heat Flux Measurements in the NASA Ames HFFAF Ballistic Range

    Get PDF
    In order to measure afterbody heat fluxes over a model in the ballistic range, the required modifications to a proven technique for measuring forebody heat fluxes are described. This involves the use of an extended helium gas plume to remove the glowing wake and the use of special high conductivity, high temperature capable graphite-filled plastic for the afterbody. The models and test conditions are described. Data in the form of plots of the surface temperature of the models are presented. Finally, experimental and computational fluid dynamic (CFD) heat flux data for forebody and afterbody heat fluxes are presented and compared. Data are presented for a 45 degree sphere-cone (with a projecting rear stud) at 2.70 km/s and for a sphere at 4.76 km/s. Both models were launched into 76 Torr of CO2 gas. The experimental forebody heat fluxes were within 1.5% of the CFD values. The experimental afterbody heat fluxes were within 1% of the CFD values for the sphere, but only 51% of the CFD values for the sphere-cone

    Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    Get PDF
    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemente

    Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds

    Get PDF
    Work continued on the improvement of 16-Inch Shock Tunnel. This comprised studies of ways of improving driver gas ignition, an improved driver gas mixing system, an axial translation system for the driver tube, improved diaphragm materials (carbon steel vs. stainless steel), a copper liner for the part of the driven tube near the nozzle, the use of a buffer gas between the driver and driven gases, the use of N2O in the driven tube, the use of a converging driven tube, operation of the facility as a non-reflected shock tunnel and expansion tube, operation with heated hydrogen or helium driver gas, the use of detonations in the driver and the construction of an enlarged test section. Maintenance and developmental work continued on the scramjet combustor continued. New software which greatly speeds up data analysis has been written and brought on line. In particular, software which provides very rapid generation of model surface heat flux profiles has been brought on line. A considerable amount of theoretical work was performed in connection with upgrading the 16 Inch Shock Tunnel Facility. A one-dimensional Godunov code for very high velocities and any equation of state is intended to add viscous effects in studying the operation of the Shock Tunnel and also of two-stage light gas guns
    corecore