51 research outputs found
Developing a Prototype System for Integrating Pharmacogenomics Findings into Clinical Practice
Findings from pharmacogenomics (PGx) studies have the potential to be applied to individualize drug therapy to improve efficacy and reduce adverse drug events. Researchers have identified factors influencing uptake of genomics in medicine, but little is known about the specific technical barriers to incorporating PGx into existing clinical frameworks. We present the design and development of a prototype PGx clinical decision support (CDS) system that builds on existing clinical infrastructure and incorporates semi-active and active CDS. Informing this work, we updated previous evaluations of PGx knowledge characteristics, and of how the CDS capabilities of three local clinical systems align with data and functional requirements for PGx CDS. We summarize characteristics of PGx knowledge and technical needs for implementing PGx CDS within existing clinical frameworks. PGx decision support rules derived from FDA drug labels primarily involve drug metabolizing genes, vary in maturity, and the majority support the post-analytic phase of genetic testing. Computerized provider order entry capabilities are key functional requirements for PGx CDS and were best supported by one of the three systems we evaluated. We identified two technical needs when building on this system, the need for (1) new or existing standards for data exchange to connect clinical data to PGx knowledge, and (2) a method for implementing semi-active CDS. Our analyses enhance our understanding of principles for designing and implementing CDS for drug therapy individualization and our current understanding of PGx characteristics in a clinical context. Characteristics of PGx knowledge and capabilities of current clinical systems can help govern decisions about CDS implementation, and can help guide decisions made by groups that develop and maintain knowledge resources such that delivery of content for clinical care is supported
Use of the novel hemostatic textile Stasilon® to arrest refractory retroperitoneal hemorrhage: a case report
<p>Abstract</p> <p>Introduction</p> <p>Stasilon<sup>® </sup>is a novel hemostatic woven textile composed of allergen-free fibers of continuous filament fiberglass and bamboo yarn. The development of this product resulted from controlled <it>in vitro </it>thrombogenic analysis of an array of potentially hemostatic textile materials and it has been cleared for both external and internal use by the United States Food and Drug Administration for the arrest of hemorrhage. The goal of the study was to assess the hemostatic and adhesive properties of Stasilon<sup>® </sup>in the setting of life-threatening refractory hemorrhage.</p> <p>Case presentation</p> <p>A 39-year-old Caucasian man presented with severe necrotic pancreatitis that failed multiple aggressive attempts to control associated bleeding with electrocautery, suture ligation, and sequential anatomic packing with cotton-based sponges. Subsequent retroperitoneal packing with Stasilon<sup>® </sup>produced a non-adherent wound-dressing interface and resulted in the achievement of persistent hemostasis in the operative field.</p> <p>Conclusion</p> <p>In our patient, Stasilon<sup>® </sup>was demonstrated to be effective in the arrest of refractory hemorrhage.</p
α4β1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the α4-cytoplasmic domain
The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which α4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the α4 tail that disrupts paxillin binding, α4(Y991A), reduced talin association to the α4β1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed α4β1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal α4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions
Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support
In pursuing personalized medicine, pharmacogenomic (PGx) knowledge may help guide prescribing drugs based on a person’s genotype. Here we evaluate the feasibility of incorporating PGx knowledge, combined with clinical data, to support clinical decision-making by: 1) analyzing clinically relevant knowledge contained in PGx knowledge resources; 2) evaluating the feasibility of a rule-based framework to support formal representation of clinically relevant knowledge contained in PGx knowledge resources; and, 3) evaluating the ability of an electronic medical record/electronic health record (EMR/EHR) to provide computable forms of clinical data needed for PGx clinical decision support. Findings suggest that the PharmGKB is a good source for PGx knowledge to supplement information contained in FDA approved drug labels. Furthermore, we found that with supporting knowledge (e.g. IF age <18 THEN patient is a child), sufficient clinical data exists in University of Washington’s EMR systems to support 50% of PGx knowledge contained in drug labels that could be expressed as rules
Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings
Legislative Organization Theory and Committee Preference Outliers in State Senates
AbstractRecently, several studies of Congress and the state legislatures have found evidence to support the information theory of legislative organization, that is, that legislatures develop committees whose characteristics reflect those of the parent body so as to acquire unbiased policy and political information. However, most of these studies have been conducted on the lower, larger legislative chambers. Senates, as smaller bodies that often follow the lead of legislation originating in their lower chambers, may have less need for unbiased information, perhaps allowing those bodies to develop more outlying, unrepresentative committees. We test this hypothesis in 42 state senates and find that unrepresentative committees also tend to be the exception in these upper chambers. Furthermore, as shown in previous studies of state house committees, the frequency of committee outliers in state senates appears to be idiosyncratic, with cultural, political, and institutional variables being unable to account for their observed patterns. While results support the information theory of legislative organization, evidence of outliers among party delegations on committees in these senates provides some support for the party-dominant theory.</jats:p
A Model of Giant Vacuole Dynamics in Human Schlemm’s Canal Endothelial Cells
Aqueous humour transport across the inner wall endothelium of Schlemm’s canal likely involves flow through giant vacuoles and pores, but the mechanics of how these structures form and how they influence the regulation of intraocular pressure (IOP) are not well understood. In this study, we developed an in vitro model of giant vacuole formation in human Schlemm’s canal endothelial cells (HSCECs) perfused in the basal-to-apical direction (i.e., the direction that flow crosses the inner wall in vivo) under controlled pressure drops (2 or 6 mmHg). The system was mounted on a confocal microscope for time-lapse en face imaging, and cells were stained with calcein, a fluorescent vital dye. At the onset of perfusion, elliptical void regions appeared within an otherwise uniformly stained cytoplasm, and 3-dimensional reconstructions revealed that these voids were dome-like outpouchings of the cell to form giant vacuole-like structures or GVLs that reproduced the classic “signet ring” appearance of true giant vacuoles. Increasing pressure drop from 2 to 6 mmHg increased GVL height (14 ± 4 vs. 21 ± 7 μm, p \u3c 0.0001) and endothelial hydraulic conductivity (1.15 ± 0.04 vs. 2.11 ± 0.49 μL min−1 mmHg−1 cm−2; p \u3c 0.001), but there was significant variability in the GVL response to pressure between cell lines isolated from different donors. During perfusion, GVLs were observed “migrating” and agglomerating about the cell layer and often collapsed despite maintaining the same pressure drop. GVL formation was also observed in human umbilical vein and porcine aortic endothelial cells, suggesting that giant vacuole formation is not a unique property of Schlemm’s canal cells. However, in these other cell types, GVLs were rarely observed “migrating” or contracting during perfusion, suggesting that Schlemm’s canal endothelial cells may be better adapted to withstand basal-to-apical directed pressure gradients. In conclusion, we have established an in vitro model system to study giant vacuole dynamics, and we have demonstrated that this system reproduces key aspects of giant vacuole morphology and behaviour. This model offers promising opportunities to investigate the role of endothelial cell biomechanics in the regulation of intraocular pressure in normal and glaucomatous eyes
Comparison of Outcome After Mesh-Only Repair, Laparoscopic Component Separation, and Open Component Separation
- …
