58 research outputs found

    A study of column equilibration time in hydrophilic interaction chromatography

    Get PDF
    © 2018 Elsevier B.V. The time taken to achieve full column equilibration for isocratic analysis of acidic, basic, and neutral solutes in hydrophilic interaction liquid chromatography (HILIC) was compared using the mobile phase disturbance method, column efficiency measurements and retention time stability. Full equilibration, which could take up to an hour, was best measured by the last procedure and was found to depend on the nature of the stationary phase, the pre-equilibrium (e.g. storage) solvent and the flow rate. While longer equilibration times are a relatively minor inconvenience in isocratic analysis, they are surprisingly not a barrier to the use of gradient elution in HILIC. A repeatable partial equilibration giving retention time stability equivalent to that in isocratic analysis was demonstrated for an equilibration time of only ∼5 min, using as few as 2 preliminary conditioning runs on a column that had taken the longest time to achieve full equilibration. Due to selectivity changes that occur dependent on the equilibration time, it is necessary to use identical gradient conditions in a series of analyses, which however appears to be facile on a modern HPLC instrument

    Understanding and manipulating the separation in hydrophilic interaction liquid chromatography

    Get PDF
    © 2017 Elsevier B.V. Hydrophilic interaction liquid chromatography (HILIC) has emerged as a valuable complimentary technique to reversed-phase (RP), being especially suited for the analysis of polar and ionised solutes, which are difficult to retain in RP. For solutes amenable to both separation mechanisms, HILIC provides a different selectivity to RP, and also offers possibilities as an orthogonal mechanism for 2-dimensional LC when combined with RP. HILIC has further advantages of lower column back pressures, and increased sensitivity with mobile phase evaporative detectors such as electrospray mass spectrometry. This review covers progress in our understanding of the HILIC technique, principally over the last ten years, including the classification of columns, the factors that control retention and selectivity, and attempts to model the separation process and its kinetics

    Core-Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography

    Get PDF
    A review of the developments that have taken place in the area of supports for high performance liquid chromatography in recent years

    Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration

    Get PDF
    © 2018 Elsevier B.V. The separation of some zwitterionic, basic and neutral antibiotic and antiretroviral compounds was studied using hydrophilic interaction chromatography (HILIC) on bare silica, bonded amide and urea superficially porous phases. The differences in the selectivity and retentivity of these stationary phases were evaluated for compounds with widely different physicochemical properties (logD −3.43 to 2.41 at ww pH 3.0). The mobile phase was acetonitrile-ammonium formate buffered at low ww pH. Compounds containing quinolone and serine groups showed poor peak shapes on all columns, attributed to metal-oxide interactions with system metals. Peak shapes were improved by addition of citrate buffers. Gradient elution, particularly with regard to column equilibration, was also studied due to the large differences in retention factors observed under isocratic conditions. Full equilibration in HILIC was slow for both ionogenic and neutral solutes, requiring as much as ∼40 column volumes. However, highly repeatable partial equilibration, suitable for gradient elution, was achieved in only a few minutes. Pronounced selectivity differences in the separations were shown dependent on the partial equilibration time

    Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography

    Get PDF
    © 2016 Elsevier B.V. Trifluoracetic acid (TFA) added to the aqueous acetonitrile mobile phase induces some unexpected changes in the ionic component of retention in hydrophilic interaction separations when using Type B silica and amide-bonded silica columns. TFA use results in anion exchange properties which contrast with the cation exchange typically found with ammonium salt buffers. The significant cation exchange properties of silica hydride columns are also moderated by TFA. Similar behaviour was shown in a metal- free amide column operated on a system washed with a metal complexing agent, suggesting that adsorbed metal cations were not responsible for this anion exchange behaviour. Both suppression of silanol ionisation at low pH and ion pairing of bases with TFA could contribute to this effect. It is also possible that the column surface acquires some positive charges at the low pH of TFA. A surprising reversal of the properties of the columns back to predominately cation exchange behaviour was shown using methanesulfonic acid (MSA), which appears to be a stronger acid than TFA in high concentrations of acetonitrile. MSA maintains sufficient ionic strength in the mobile phase even at low concentrations, giving good peak shape, which could be useful for mass spectrometry detection. Besides giving different selectivity to TFA, MSA also gives different selectivity to that of ammonium salt buffers, suggesting it may be useful in manipulating the selectivity of a separation. Similar changes to the selectivity with TFA could be achieved by adding neutral methylsulfonate salts to the TFA mobile phase. While it is possible that methylsulfonate ions are retained on the stationary phase surface, experiments using ion pair reagents of opposite charge yielded the same results as MSA salts. It therefore seems more likely that the higher ionic strength of these solutions negates the influence of charges that may be formed in TFA solutions. Ion pairing effects with MSA are expected to be limited

    Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography

    Get PDF
    The kinetic performance of a bare silica and C18 phase prepared from the same sub-2. μm and 3.5. μm base materials were compared in the HILIC and RP mode using both charged and neutral solutes. The HILIC column was characterised using the neutral solute 5-hydroxymethyluridine, the weak base cytosine, and the strong base nortriptyline, the latter having sufficient retention also in the RP mode to allow comparison of performance. Naphthalene was also used as a simple neutral substance to evaluate the RP column alone. The retention factors of all substances were adjusted to give similar values (k'. ~. 5.5) at their respective optimum linear velocities. Reduced van Deemter b-coefficients (determined by curve fitting and by the peak parking method, using a novel procedure involving switching to a dummy column) were significantly lower in HILIC for all substances compared with those found under RP conditions. Against expectation, c-coefficients were always lower in RP when compared with HILIC using sub-2. μm particles. While measurement of these coefficients is complicated by retention shifts caused by the influence of high pressure and by frictional heating effects, broadly similar results were obtained on larger particle (3.5. μm) phases. The mechanism of the separations was further investigated by examining the effect of buffer concentration on retention. It was concluded that HILIC can sometimes show somewhat inferior performance to RP for fast analysis at high mobile phase velocity, but clearly shows advantages when high column efficiencies, using longer columns at low flow velocity, are employed. The latter result is attributable to the lower viscosity of the mobile phase in HILIC and the reduced pressure requirement as well as the lower b-coefficients. © 2014 David V. McCalley

    Performance of charged aerosol detection with hydrophilic interaction chromatography

    Get PDF
    © 2015 The Authors. The performance of the charged aerosol detector (CAD) was investigated using a diverse set of 29 solutes, including acids, bases and neutrals, over a range of mobile phase compositions, particularly with regard to its suitability for use in hydrophilic interaction chromatography (HILIC). Flow injection analysis was employed as a rapid method to study detector performance. CAD response was 'quasi-universal', strong signals were observed for compounds that have low volatility at typical operating (room) temperature. For relatively involatile solutes, response was reasonably independent of solute chemistry, giving variation of 12-18% RSD from buffered 95% ACN (HILIC) to 10% ACN (RP). Somewhat higher response was obtained for basic compared with neutral solutes. For cationic basic solutes, use of anionic reagents of increasing size in the mobile phase (formic, trifluoroacetic and heptafluorobutyric acid) produced somewhat increased detector response, suggesting that salt formation with these reagents is contributory. However, the increase was not stoichiometric, pointing to a complex mechanism. In general, CAD response increased as the concentration of acetonitrile in the mobile phase was increased from highly aqueous (10% ACN) to values typical in the HILIC range (80-95% ACN), with signal to noise ratios about four times higher than those for the RP range. The response of the CAD is non-linear. Equations describing aerosol formation cannot entirely explain the shape of the plots. Limits of detection (determined with a column for solutes of low k) under HILIC conditions were of the order of 1-3. ng on column, which compares favourably with other universal detectors. CAD response to inorganic anions allows observation of the independent movement through the column of the cationic and anionic constituents of basic drugs, which appear to be accompanied by mobile phase counterions, even at quite high solute concentrations

    Help! Help Your Substitute Teach Science

    Get PDF
    The science teacher often finds that to miss a day of school most frequently means to have lost a day of instruction. School administrators are experiencing serious difficulty in finding substitutes for teachers of the new B.S.C.S., C.B.A., CHEMS and P.S.S.C., programs

    Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure

    Get PDF
    © 2016 Elsevier B.V. Separation of diastereomers of DL-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3 mmID, 20 cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic DL-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0 °C, 536 bar, while three peaks were observed when the separation was carried out either at 12.0 °C at low pressure or at 20 °C at 488 bar. Higher temperature (30.0 °C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0 °C and 441 bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0 °C and 463 bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of DL-α-tocopherol
    • …
    corecore