9,979 research outputs found
Effect of mixing and spatial dimension on the glass transition
We study the influence of composition changes on the glass transition of
binary hard disc and hard sphere mixtures in the framework of mode coupling
theory. We derive a general expression for the slope of a glass transition
line. Applied to the binary mixture in the low concentration limits, this new
method allows a fast prediction of some properties of the glass transition
lines. The glass transition diagram we find for binary hard discs strongly
resembles the random close packing diagram. Compared to 3D from previous
studies, the extension of the glass regime due to mixing is much more
pronounced in 2D where plasticization only sets in at larger size disparities.
For small size disparities we find a stabilization of the glass phase quadratic
in the deviation of the size disparity from unity.Comment: 13 pages, 8 figures, Phys. Rev. E (in print
Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study
The structure of a molecular liquid, in both the nematic liquid crystalline
and isotropic phases, around a cylindrical macroparticle, is studied using
density functional theory. In the nematic phase the structure of the fluid is
highly anisotropic with respect to the director, in agreement with results from
simulation and phenomenological theories. On going into the isotropic phase the
structure becomes rotationally invariant around the macroparticle with an
oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.
Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1
A spectral method for elliptic equations: the Dirichlet problem
An elliptic partial differential equation Lu=f with a zero Dirichlet boundary
condition is converted to an equivalent elliptic equation on the unit ball. A
spectral Galerkin method is applied to the reformulated problem, using
multivariate polynomials as the approximants. For a smooth boundary and smooth
problem parameter functions, the method is proven to converge faster than any
power of 1/n with n the degree of the approximate Galerkin solution. Examples
in two and three variables are given as numerical illustrations. Empirically,
the condition number of the associated linear system increases like O(N), with
N the order of the linear system.Comment: This is latex with the standard article style, produced using
Scientific Workplace in a portable format. The paper is 22 pages in length
with 8 figure
The White Dwarf Cooling Sequence of NGC6397
We present the results of a deep Hubble Space Telescope (HST) exposure of the
nearby globular cluster NGC6397, focussing attention on the cluster's white
dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in
depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using
both artificial star tests and the detectability of background galaxies at
fainter magnitudes, that the cutoff is real and represents the truncation of
the white dwarf luminosity function in this cluster. We perform a detailed
comparison between cooling models and the observed distribution of white dwarfs
in colour and magnitude, taking into account uncertainties in distance,
extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model
uncertainties. After marginalising over these variables, we obtain values for
the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47
\pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf
initial-final mass relations are in good agreement with other independent
determinations, and the cluster age is consistent with, but more precise than,
prior determinations made using the main sequence turnoff method. In
particular, within the context of the currently accepted \Lambda CDM
cosmological model, this age places the formation of NGC6397 at a redshift z=3,
at a time when the cosmological star formation rate was approaching its peak.Comment: 56 pages, 30 figure
An elemental assay of very, extremely, and ultra-metal-poor stars
We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < â3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a "floor" in the absolute Ba abundances of CEMP-no stars at A(Ba) ~ â2.0
Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"
A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account
Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins
We study implications for the apparent alignment of the spin axes,
proper-motions, and polarization vectors of the Crab and Vela pulsars. The spin
axes are deduced from recent Chandra X-ray Observatory images that reveal jets
and nebular structure having definite symmetry axes. The alignments indicate
these pulsars were born either in isolation or with negligible velocity
contributions from binary motions. We examine the effects of rotation and the
conditions under which spin-kick alignment is produced for various models of
neutron star kicks. If the kick is generated when the neutron star first forms
by asymmetric mass ejection or/and neutrino emission, then the alignment
requires that the protoneutron star possesses an original spin with period
much less than the kick timescale, thus spin-averaging the kick forces.
The kick timescale ranges from 100 ms to 10 s depending on whether the kick is
hydrodynamically driven or neutrino-magnetic field driven. For hydrodynamical
models, spin-kick alignment further requires the rotation period of an
asymmetry pattern at the radius near shock breakout (>100 km) to be much less
than ~100 ms; this is difficult to satisfy unless rotation plays a dynamically
important role in the core collapse and explosion (P_s\lo 1 ms). Aligned kick
and spin vectors are inherent to the slow process of asymmetric electromagnetic
radiation from an off-centered magnetic dipole. We reassess the viability of
this effect, correcting a factor of 4 error in Harrison and Tademaru's
calculation that increases the size of the effect. To produce a kick velocity
of order a few hundred km/s requires that the neutron star be born with an
initial spin close to 1 ms and that spindown due to r-mode driven gravitational
radiation be inefficient compared to standard magnetic braking.Comment: Small changes/additions; final version to be published in ApJ,
Vol.549 (March 10, 2001
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRRâs Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a âtotal approach to rehabilitationâ, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970âs, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
- âŠ