We study implications for the apparent alignment of the spin axes,
proper-motions, and polarization vectors of the Crab and Vela pulsars. The spin
axes are deduced from recent Chandra X-ray Observatory images that reveal jets
and nebular structure having definite symmetry axes. The alignments indicate
these pulsars were born either in isolation or with negligible velocity
contributions from binary motions. We examine the effects of rotation and the
conditions under which spin-kick alignment is produced for various models of
neutron star kicks. If the kick is generated when the neutron star first forms
by asymmetric mass ejection or/and neutrino emission, then the alignment
requires that the protoneutron star possesses an original spin with period
Ps much less than the kick timescale, thus spin-averaging the kick forces.
The kick timescale ranges from 100 ms to 10 s depending on whether the kick is
hydrodynamically driven or neutrino-magnetic field driven. For hydrodynamical
models, spin-kick alignment further requires the rotation period of an
asymmetry pattern at the radius near shock breakout (>100 km) to be much less
than ~100 ms; this is difficult to satisfy unless rotation plays a dynamically
important role in the core collapse and explosion (P_s\lo 1 ms). Aligned kick
and spin vectors are inherent to the slow process of asymmetric electromagnetic
radiation from an off-centered magnetic dipole. We reassess the viability of
this effect, correcting a factor of 4 error in Harrison and Tademaru's
calculation that increases the size of the effect. To produce a kick velocity
of order a few hundred km/s requires that the neutron star be born with an
initial spin close to 1 ms and that spindown due to r-mode driven gravitational
radiation be inefficient compared to standard magnetic braking.Comment: Small changes/additions; final version to be published in ApJ,
Vol.549 (March 10, 2001