439 research outputs found

    Reconnection of Non-Abelian Cosmic Strings

    Full text link
    Cosmic strings in non-abelian gauge theories naturally gain a spectrum of massless, or light, excitations arising from their embedding in color and flavor space. This opens up the possibility that colliding strings miss each other in the internal space, reducing the probability of reconnection. We study the topology of the non-abelian vortex moduli space to determine the outcome of string collision. Surprisingly we find that the probability of classical reconnection in this system remains unity, with strings passing through each other only for finely tuned initial conditions. We proceed to show how this conclusion can be changed by symmetry breaking effects, or by quantum effects associated to fermionic zero modes, and present examples where the probability of reconnection in a U(N) gauge theory ranges from 1/N for low-energy collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde

    Non-Gaussian perturbations from multi-field inflation

    Get PDF
    We show how the primordial bispectrum of density perturbations from inflation may be characterised in terms of manifestly gauge-invariant cosmological perturbations at second order. The primordial metric perturbation, zeta, describing the perturbed expansion of uniform-density hypersurfaces on large scales is related to scalar field perturbations on unperturbed (spatially-flat) hypersurfaces at first- and second-order. The bispectrum of the metric perturbation is thus composed of (i) a local contribution due to the second-order gauge-transformation, and (ii) the instrinsic bispectrum of the field perturbations on spatially flat hypersurfaces. We generalise previous results to allow for scale-dependence of the scalar field power spectra and correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged; version to appear in JCA

    Non-Gaussianities in two-field inflation

    Get PDF
    We study the bispectrum of the curvature perturbation on uniform energy density hypersurfaces in models of inflation with two scalar fields evolving simultaneously. In the case of a separable potential, it is possible to compute the curvature perturbation up to second order in the perturbations, generated on large scales due to the presence of non-adiabatic perturbations, by employing the δN\delta N-formalism, in the slow-roll approximation. In this case, we provide an analytic formula for the nonlinear parameter fNLf_{NL}. We apply this formula to double inflation with two massive fields, showing that it does not generate significant non-Gaussianity; the nonlinear parameter at the end of inflation is slow-roll suppressed. Finally, we develop a numerical method for generic two-field models of inflation, which allows us to go beyond the slow-roll approximation and confirms our analytic results for double inflation.Comment: 29 pages, 6 figures. v2, comparison with previous estimates. v3, JCAP version; Revisions based on Referee's comment, corrected typos, added few eqs and refs, conclusions unchange

    The inflationary trispectrum

    Get PDF
    We calculate the trispectrum of the primordial curvature perturbation generated by an epoch of slow-roll inflation in the early universe, and demonstrate that the non-gaussian signature imprinted at horizon crossing is unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar ratio. Therefore any primordial non-gaussianity observed in future microwave background experiments is likely to have been synthesized by gravitational effects on superhorizon scales. We discuss the application of Maldacena's consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2, replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and Eq. (48) corrected. Some minor notational change

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Diagrammatic approach to non-Gaussianity from inflation

    Get PDF
    We present Feynman type diagrams for calculating the n-point function of the primordial curvature perturbation in terms of scalar field perturbations during inflation. The diagrams can be used to evaluate the corresponding terms in the n-point function at tree level or any required loop level. Rules are presented for drawing the diagrams and writing down the corresponding terms in real space and Fourier space. We show that vertices can be renormalised to automatically account for diagrams with dressed vertices. We apply these rules to calculate the primordial power spectrum up to two loops, the bispectrum including loop corrections, and the trispectrum.Comment: 17 pages, 13 figures. v2: Comments and references added, v3: Introduction expanded, subsection on evaluating loop diagrams added, minor errors corrected, references adde

    Occupation-specific suicide risk in England:2011-2015

    Get PDF
    Background: Previous research has documented marked occupational differences in suicide risk, but these estimates are 10 years out-of-date and were based on potentially biased assessments of risk. Aims: To investigate occupation-specific suicide mortality risk in England 2011-2015.Method: Estimation of indirectly standardized mortality rates for occupations and occupational groups based on national (Office for National Statistics) data for England. Results: Among males the highest risks were seen in low-skilled occupations, particularly construction workers (SMR 369, 95% CI 333-409); low skilled workers comprised 17% (1,784/10,688) of all male suicides. High risks were also seen among call and contact centre workers (SMR 290, CI 204-399); there was no evidence of increased risk among some occupations previously causing concern - male health care professionals and farmers. Among females the highest risks were seen in artists (SMR, 399 CI 244-616) and bar staff (SMR 182, CI 123-260); nurses also had an increased risk (SMR 123, CI 104-145). People in creative occupations and the entertainment industry: artists (males and females), musicians (males) and actors (males) were all at increased risk, though the absolute numbers of deaths in these occupations were low. In both males (SMR 192, CI 165-221) and females (SMR 170, CI 149-194), care workers were at increased risk and experienced a considerable number of suicide deaths. Conclusions: Specific contributors to suicide in high-risk occupations should be identified and measures, such as workplace-based interventions put in place to mitigate this risk. The construction industry seems to be an important target for preventive interventions.Declaration of interest: Non

    One-loop corrections to a scalar field during inflation

    Full text link
    The leading quantum correction to the power spectrum of a gravitationally-coupled light scalar field is calculated, assuming that it is generated during a phase of single-field, slow-roll inflation.Comment: 33 pages, uses feynmp.sty and ioplatex journal style. v2: matches version published in JCAP. v3: corrects sign error in Eq. (58). Corrects final coefficient of the logarithm in Eq. (105). Small corrections to discussion of divergences in 1-point function. Minor improvements to discussion of UV behaviour in Sec. 4.

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore