11 research outputs found

    Multi-trait genome-wide association study identifies new loci associated with optic disc parameters

    Get PDF
    A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A novel target synthesis laboratory for students

    No full text
    A third-year specialist course in drug design and delivery focused on a single laboratory goal for all students. A tetrapeptide, destined as the signal component of a drug delivery system, was chosen for this target synthesis. The practical, real-life aspect of the course, and the target synthesis in particular, was a major component of the appeal to the students. Students were given a synthetic scheme based on standard peptide synthesis protocols, and several lectures provided background for the general approach. They were then encouraged to design each step of the synthesis themselves, with reference to the literature and course work. As long as due diligence was shown in attempts to achieve success at each step, no student was penalized for losses, low yields, or other lack of progress. Reports on all procedures used were prepared in a journal format chosen by the student and were collected at the end of the course. The target-synthesis approach was appreciated by the students and enjoyed by the staff. We believe the students left the course with a greater appreciation for laboratory research. It takes more work to set up and run this type of course than the traditional follow-the-recipe course, but in our experience it was worth the extra effort

    New sustainable chemically modified chitosan derivatives for different applications: Synthesis and characterization

    No full text
    The functionalization of chitosan (CS) by terephthaloyl chloride (TPC), glutaraldehyde (GA), and 4(4-(ethyl carbamoyl) benzoyl chloride) benzene sulfonamide was performed under different reaction conditions to yield the new hydrogels (I, II, III) respectively. However, hydrogel (I-NPs) was prepared from reaction of chitosan with (TPC) via ionic gelation technique using sodium tripolyphosphate (TPP) as a cross-linker. Moreover, hydrogel (I) was loaded (Au, Ag and ZnO) nanoparticles to give the nanoformulations (I-Au NPs, I-Ag NPs and I-ZnO NPs) respectively. Structural and morphological analysis of the new chitosan derivatives hydrogels and NPs formulations were characterized by FTIR, elemental analysis, TGA, DSC, XRD, SEM and TEM. From swelling study, chitosan derivatives hydrogels revealed higher swelling degree compared to (CS) with increasing time, temperature and pH values which reached maximum at pH 7 then decreased at pH 10. In addition, the maximum sorption capacities of Congo Red (CR) in aqueous solution were in the range 81–88%. Moreover, adsorption equilibrium isotherm results displayed favorable Langmuir model than Freundlich model. Furthermore, chitosan derivatives hydrogels showed broad spectrum antimicrobial activities against Gram-negative bacteria, Gram-positive bacteria and fungi with the inhibition zone diameter ranged from 13 to 25 mm compared to (CS) hydrogel which revealed inhibition zone diameter ranged from 11 to 16 mm, especially the nano formulation hydrogel (I-Ag NPs) showed the highest antimicrobial activity. The results were promising suggesting that the new modified chitosan derivatives could be potential for dye removal and as antimicrobial agents

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    No full text
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of “big data” (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA’s activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries

    No full text
    10.1038/s41467-020-20851-4Nature Communications121125

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The impact of space experiments on our knowledge of the physics of the universe

    No full text
    corecore