2,780 research outputs found

    Visuospatial Sequence Learning without Seeing

    Get PDF
    Background: The ability to detect and integrate associations between unrelated items that are close in space and time is a key feature of human learning and memory. Learning sequential associations between non-adjacent visual stimuli (higher-order visuospatial dependencies) can occur either with or without awareness (explicit vs. implicit learning) of the products of learning. Existing behavioural and neurocognitive studies of explicit and implicit sequence learning, however, are based on conscious access to the sequence of target locations and, typically, on conditions where the locations for orienting, or motor, responses coincide with the locations of the target sequence. Methodology/Principal findings: Dichoptic stimuli were presented on a novel sequence learning task using a mirror stereoscope to mask the eye-of-origin of visual input from conscious awareness. We demonstrate that conscious access to the sequence of target locations and responses that coincide with structure of the target sequence are dispensable features when learning higher-order visuospatial sequence on a recognition test, even though the trained and untrained recognition sequences were identical when viewed at a conscious binocular level, and differed only at the level of the masked sequential associations. Conclusions/significance: These results demonstrate that unconscious processing can support perceptual learning of higher-order sequential associations through interocular integration of retinotopic-based codes stemming from monocular eye-of-origin information. Furthermore, unlike other forms of perceptual associative learning, visuospatial attention did not need to be directed to the locations of the target sequence. More generally, the results pose a challenge to neural models of learning to account for a previously unknown capacity of the human visual system to support the detection, learning and recognition of higher-order sequential associations where observers are unable to see the target sequence or perform responses that coincide with the structure of the target sequence

    Small-Scale Forestry and Carbon Offset Markets: an Empirical Study of Vermont Current Use Forest Landowner Willingness to Accept Carbon Credit Programs

    Get PDF
    This study investigates the preferences of small forest landowners regarding forest carbon credit programs while documenting characteristics of potentially successful frameworks. We designed hypothetical carbon credit programs with aggregated carbon offset projects and requirements of existing voluntary and compliance protocols in mind. We administered a mail survey to 992 forest landowners in Vermont’s Current Use Program utilizing best-worst choice, a novel preference elicitation technique, to elicit their preferences about these programs. We found that small forest landowners see revenue as the most important factor in a carbon credit program and the duration of the program as the least important factor. Landowners reported that shorter program duration, higher revenue, and lower withdrawal penalties positively impact their willingness to accept forest carbon credit programs. Notably, our study includes carbon credit program implementer as a key program attribute, allowing us to quantify landowners’ tradeoffs between non-profit, for-profit, and government organizations. Overall, we found that landowners significantly prefer working with a non-profit organization. Based on monetary estimates of willingness-to-accept compensation, our results suggest that aggregated forest carbon offset projects incorporating small forest landowners could be piloted successfully in Vermont by non-profit organizations while maintaining relatively strict guidelines of existing carbon offset protocols

    Dissipació de l'energia per fregament : seqüència didàctica per a l'estudi de l'energia

    Get PDF
    Treball que correspon a les pràctiques que es fan als tallers REVIR organitzats pel CRECIM de la UAB. La seqüència pretén ajudar a l'estudiant de 4t ESO i 1r Batxillerat a construir el model escolar d'energia, i utilitzar-lo per interpretar fenòmens quotidians, com ara l'escalfament d'un fre per fregament i el seu posterior refredament per equilibri tèrmic amb l'entorn

    Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex

    Get PDF
    Published Online: March 03, 2016Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol—designed to induce activity in V1, without modulation from visual awareness—to test whether human V1 is implicated in human observers rapidly learning and then later (15–20 min) recognizing a non-conscious and complex (secondorder) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of ‘‘implicit’’ sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later nonconscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experiencedependent V1 plasticity in learning and memory [6].This work was supported by the Wellcome Trust (WT073735MA; C.R.R. and C.K.; http://www.wellcome.ac.uk/), the Medical Research Council (UK, 89631; D.S.; http://www.mrc.ac.uk/), the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford (C.R.R., C.A.A., and C.K.; http://oxfordbrc.nihr.ac.uk/), and the Dementias and Neurodegenerative Diseases Research Network (C.A.A.; https://www.crn.nihr.ac.uk/dementia)

    Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy

    Get PDF
    BACKGROUND: Autophagy (macroautophagy), a cellular process of “self-eating”, segregates damaged/aged organelles into vesicles, fuses with lysosomes, and enables recycling of the digested materials. The precise origin(s) of the autophagosome membrane is unclear and remains a critical but unanswered question. Endoplasmic reticulum, mitochondria, Golgi complex, and the plasma membrane have been proposed as the source of autophagosomal membranes. FINDINGS: Using electron microscopy, immunogold labeling techniques, confocal microscopy, and flow cytometry we show that mitochondria can directly donate their membrane material to form autophagosomes. We expand upon earlier studies to show that mitochondria donate their membranes to form autophagosomes during basal and drug-induced autophagy. Moreover, electron microscopy and immunogold labeling studies show the first physical evidence of mitochondria forming continuous structures with LC3-labeled autophagosomes. The mitochondria forming these structures also stain positive for parkin, indicating that these mitochondrial-formed autophagosomes represent a novel mechanism of parkin-associated mitophagy. CONCLUSIONS: With the on-going debate regarding autophagosomal membrane origin, this report demonstrates that mitochondria can donate membrane materials to form autophagosomes. These structures may also represent a novel form of mitophagy where the mitochondria contribute to the formation of autophagosomes. This novel form of parkin-associated mitophagy may be a more efficient bio-energetic process compared with de novo biosynthesis of a new membrane, particularly if the membrane is obtained, at least partly, from the organelle being targeted for later degradation in the mature autolysosome

    Examining Associations Between Preschool Home Literacy Experiences, Language, Cognition And Early Word Reading: Evidence From A Longitudinal Study

    Get PDF
    Research Findings: The study investigated whether preschool code-related home literacy experiences had direct associations with regular and irregular word reading in the first year of primary school as well as exploring whether there were indirect associations between these experiences and later word reading via children\u2019s language skills or inhibitory control. The parents of 274 preschool children completed a home learning questionnaire at time 1 (Mage  = 3:11). At time 2, the children completed phonological awareness, vocabulary, inhibitory control and nonverbal reasoning assessments (Mage  = 4:3) and at time 3 a word reading assessment (Mage  = 5:3). Letter-sound interactions (a code-related home literacy index that included discussions about letter-sound associations) bore significant associations with children\u2019s word reading, whereas letter activities (a code-related index that was less focussed on letter-sound links) did not. Path analyses indicated that letter-sound interactions directly predicted regular word reading and predicted regular and irregular word reading indirectly via children\u2019s phonological awareness. These findings highlight that different aspects of code-related home literacy experiences are differentially associated with later word reading skills. Practice and Policy: The findings suggest that parents\u2019 integration of interactive, age-appropriate discussions that focus on letter-sound associations into children\u2019s everyday experiences may support emerging word decoding skills

    Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa

    Get PDF
    RNA isolated from the glands of a Δ9-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands

    An Experimental Validated Computational Method for pKa Determination of Substituted 1,2-Dihydroxybenzenes

    Get PDF
    1,2-dihydroxybenzenes (DHBs) are organic compounds which are widely studied as they are applied to advanced oxidation processes (AOPs). These compounds are also related to the development of oxidative stress, wood biodegradation, and neuronal disease in humans. DHBs are metal ligands with pro-oxidant and antioxidant properties. These activities are related to their chelation properties and a consequence of the deprotonation of their hydroxyl groups. In literature, there are several pKa values for the hydroxyl groups of DHBs. These values vary depending on the experimental conditions or the algorithm used for calculation. In this work, an experimentally validated computational method was implemented in aqueous solution for pKa determination of 24 DHBs. The deprotonation order of the hydroxyl groups in DHB was determined observing a selective deprotonation, which depended on the ability of the substituent to donate or withdraw electron density over the ring
    corecore