103 research outputs found

    Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile

    Get PDF
    Funding This work has been funded by Consejería de Educación, Junta de Castilla y León (research project LE007A07). Acknowledgments We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Support received from CICYT project AGL2005-04760-C02-02 is gratefully acknowledged.Peer reviewedPublisher PD

    Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

    Get PDF
    The Rowett Institute of Nutrition and Health and SRUC are funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The project was supported by DEFRA and DA funded Agricultural Greenhouse Gas Inventory Research Platform. Our thanks are due to the excellent support staff at the SRUC Beef Research Centre, Edinburgh, also to Graham Horgan of BioSS, Aberdeen, for conducting multivariate analysis.Peer reviewedPublisher PD

    Evaluation of the microbiome of decaying alder nodules by next generation sequencing

    Get PDF
    This work investigated the microbial content of decaying nodules from alders. The 16S rDNA composition of the microbiome of six senescent alder nodules was investigated by 454 sequencing. All nodules still had some Frankia sequences present, but in each case it was only detected at minor levels, with other organisms predominating. Although organisms from three different phyla (Bacteroidetes, Proteobacteria and Actinobacteria) constituted almost all (98% or more) of all sequences, Bacteroidetes were most abundant in four nodules with Proteobacteria being most abundant in the other two. In addition a few families were represented at a level of 10% or more of the total sequences: Sphingobacteriaceae (all 6 nodules); Chitinophagaceae (5 of 6); non-Frankia Actinomycetales (2 of 6); Caulobacteraceae (2 of 6); Flavobacteriaceae (2 of 6); Oxalobacteraceae (1 of 6); and Xanthomoadaceae (1 of 6). Analysis at the genus level showed a diverse range of organisms, with members of the genus Pedobacter being found at an abundant level within most nodules

    Centralized red muscle in Odontaspis ferox and the prevalence of regional endothermy in sharks

    Get PDF
    The order Lamniformes contains charismatic species such as the white shark Carcharodon carcharias and extinct megatooth shark Otodus megalodon, and is of particular interest given their influence on marine ecosystems, and because some members exhibit regional endothermy. However, there remains significant debate surrounding the prevalence and evolutionary origin of regional endothermy in the order, and therefore the development of phenomena such as gigantism and filter-feeding in sharks generally. Here we show a basal lamniform shark, the smalltooth sand tiger shark Odontaspis ferox, has centralized skeletal red muscle and a thick compact-walled ventricle; anatomical features generally consistent with regionally endothermy. This result, together with the recent discovery of probable red muscle endothermy in filter feeding basking sharks Cetorhinus maximus, suggests that this thermophysiology is more prevalent in the Lamniformes than previously thought, which in turn has implications for understanding the evolution of regional endothermy, gigantism, and extinction risk of warm-bodied shark species both past and present

    Understanding the transfer of contemporary temperature signals into lake sediments via paired oxygen isotope ratios in carbonates and diatom silica: problems and potential

    Get PDF
    Although the oxygen isotope composition (δ18O) of calcite (δ18Ocalcite) and, to a lesser extent, diatom silica (δ18Odiatom) are widely used tracers of past hydroclimates (especially temperature and surface water hydrology), the degree to which these two hosts simultaneously acquire their isotope signals in modern lacustrine environments, or how these are altered during initial sedimentation, is poorly understood. Here, we present a unique dataset from a natural limnological laboratory to explore these issues. This study compares oxygen and hydrogen isotope data (δ18O, δ2H) of contemporary lake water samples at ~2-weekly intervals over a 2-year period (2010–12) with matching collections of diatoms (δ18Odiatom) and calcite (δ18Ocalcite) from sediment traps (at 10 m and 25 m) at Rostherne Mere (maximum depth 30 m), a well-monitored, eutrophic, seasonally stratified monomictic lake in the UK. The epilimnion shows a seasonal pattern of rising temperature and summer evaporative enrichment in 18O, and while there is a temperature imprint in both δ18Odiatom and δ18Ocalcite, there is significant inter-annual variability in both of these signals. The interpretation of δ18Odiatom and δ18Ocalcite values is complicated due to in-lake processes (e.g. non-equilibrium calcite precipitation, especially in spring, leading to significant 18Ocalcite depletion), and for δ18Odiatom, by post-mortem, depositional and possibly dissolution or diagenetic effects. For 2010 and 2011 respectively, there is a strong temperature dependence of δ18Ocalcite and δ18Odiatom in fresh trap material, with the fractionation slope for δ18Odiatom of ca. −0.2‰/°C, in agreement with several other studies. The δ18Odiatom data indicate the initiation of rapid post-mortem secondary alteration of fresh diatom silica (within ~6 months), with some trap material undergoing partial maturation in situ. Diatom δ18O of the trap material is also influenced by resuspension of diatom frustules from surface sediments (notably in summer 2011), with the net effect seen as an enrichment of deep-trap 18Odiatom by about +0.7‰ relative to shallow-trap values. Contact with anoxic water and anaerobic bacteria are potentially key to initiating this silica maturation process, as deep-trap samples that were removed prior to anoxia developing do not show enrichment. Dissolution (perhaps enhanced by anaerobic bacterial communities) may also be responsible for changes to δ18Odiatom that lead to increasing, but potentially predictable, error in inferred temperatures using this proxy. High resolution, multi-year monitoring can shed light on the complex dynamics affecting δ18Odiatom and δ18Ocalcite and supports the careful use of sedimentary δ18Odiatom and δ18Ocalcite as containing valuable hydroclimatic signals especially at a multi-annual resolution, although there remain substantial challenges to developing a reliable geothermometer on paired δ18Odiatom and δ18Ocalcite. In particular, δ18Odiatom needs cautious interpretation where silica post-mortem secondary alteration is incomplete and diatom preservation is not perfect, and we recommend dissolution be routinely assessed on diatom samples used for isotopic analyses
    corecore