4,357 research outputs found
A Formal Context Representation Framework for Network-Enabled Cognition
Network-accessible resources are inherently contextual with respect to the specific situations (e.g., location and default assumptions) in which they are used. Therefore, the explicit conceptualization and representation of contexts is required to address a number of problems in Network- Enabled Cognition (NEC). We propose a context representation framework to address the computational specification of contexts. Our focus is on developing a formal model of context for the unambiguous and effective delivery of data and knowledge, in particular, for enabling forms of automated inference that address contextual differences between agents in a distributed network environment. We identify several components for the conceptualization of contexts within the context representation framework. These include jurisdictions (which can be used to interpret contextual data), semantic assumptions (which highlight the meaning of data), provenance information and inter-context relationships. Finally, we demonstrate the application of the context representation framework in a collaborative military coalition planning scenario. We show how the framework can be used to support the representation of plan-relevant contextual information
Effects of pH on Growth of Salvinia molesta Mitchell
Growth of giant salvinia (
Salvinia molesta
Mitchell) under
different pH regimes was examined at the Lewisville Aquatic
Ecosystem Research Facility (LAERF) in Lewisville, Texas.(PDF has 5 pages.
Supporting Distributed Coalition Planning with Semantic Wiki Technology
Contemporary and near-future military coalition environments present a number of challenges for military planning. Not only must military planners create plans against a backdrop of strict time constraints and uncertain information, they must also coordinate their planning efforts with other planning staff (often from different organizational, linguistic and cultural communities). This paper examines the potential for semantic wikis to support collaborative planning activities in the face of these challenges. Whilst we do not claim that semantic wikis could support all aspects of the collaborative planning process, we do suggest that semantic wikis can provide a highly configurable online editing environment which is likely to be of value in at least some coalition planning contexts. The strengths of semantic wikis include their support for distributed editing, their support for flexible forms of information presentation, and the opportunities they provide for new forms of inter-agent coordination. Their weaknesses include the absence of supportive plan editing interfaces and the limited support for the representation of highly expressive planning models. In the current paper, we discuss this profile of strengths and weaknesses, and we also discuss how a specific semantic wiki system, namely Semantic MediaWiki, could be used to support some aspects of collaborative planning
Deep carbon storage potential of buried floodplain soils.
Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration
Socially-distributed cognition and cognitive architectures: towards an ACT-R-based cognitive social simulation capability
ACT-R is one of the most widely used cognitive architectures, and it has been used to model hundreds of phenomena described in the cognitive psychology literature. In spite of this, there are relatively few studies that have attempted to apply ACT-R to situations involving social interaction. This is an important omission since the social aspects of cognition have been a growing area of interest in the cognitive science community, and an understanding of the dynamics of collective cognition is of particular importance in many organizational settings. In order to support the computational modeling and simulation of socially-distributed cognitive processes, a simulation capability based on the ACT-R architecture is described. This capability features a number of extensions to the core ACT-R architecture that are intended to support social interaction and collaborative problem solving. The core features of a number of supporting applications and services are also described. These applications/services support the execution, monitoring and analysis of simulation experiments. Finally, a system designed to record human behavioral data in a collective problem-solving task is described. This system is being used to undertake a range of experiments with teams of human subjects, and it will ultimately support the development of high fidelity ACT-R cognitive models. Such models can be used in conjunction with the ACT-R simulation capability to test hypotheses concerning the interaction between cognitive, social and technological factors in tasks involving socially-distributed information processing
Assessing Short‐Term Impacts of Management Practices on N2O Emissions From Diverse Mediterranean Agricultural Ecosystems Using a Biogeochemical Model
Croplands are important sources of nitrous oxide (N2O) emissions. The lack of both long‐term field measurements and reliable methods for extrapolating these measurements has resulted in a large uncertainty in quantifying and mitigating N2O emissions from croplands. This is especially relevant in regions where cropping systems and farming management practices (FMPs) are diverse. In this study, a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC), was tested against N2O measurements from five cropping systems (alfalfa, wheat, lettuce, vineyards, and almond orchards) representing diverse environmental conditions and FMPs. The model tests indicated that DNDC was capable of predicting seasonal and annual total N2O emissions from these cropping systems, and the model\u27s performance was better than the Intergovernmental Panel on Climate Change emission factor approach. DNDC also captured the impacts on N2O emissions of nitrogen fertilization for wheat and lettuce, of stand age for alfalfa, as well as the spatial variability of N2O fluxes in vineyards and orchards. DNDC overestimated N2O fluxes following some heavy rainfall events. To reduce the biases of simulating N2O fluxes following heavy rainfall, studies should focus on clarifying mechanisms controlling impacts of environmental factors on denitrification. DNDC was then applied to assess the impacts on N2O emissions of FMPs, including tillage, fertilization, irrigation, and management of cover crops. The practices that can mitigate N2O emissions include reduced or no tillage, reduced N application rates, low‐volume irrigation, and cultivation of nonleguminous cover crops. This study demonstrates the necessity and potential of utilizing process‐based models to quantify N2O emissions from regions with highly diverse cropping systems
Classical generalized constant coupling model for geometrically frustrated antiferromagnets
A generalized constant coupling approximation for classical geometrically
frustrated antiferromagnets is presented. Starting from a frustrated unit we
introduce the interactions with the surrounding units in terms of an internal
effective field which is fixed by a self consistency condition. Results for the
magnetic susceptibility and specific heat are compared with Monte Carlo data
for the classical Heisenberg model for the pyrochlore and kagome lattices. The
predictions for the susceptibility are found to be essentially exact, and the
corresponding predictions for the specific heat are found to be in very good
agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of
the pyrochlore specific heat correcte
Recommended from our members
Quantifying the impact of an extreme climate event on species diversity in fragmented temperate forests: the effect of the October 1987 storm on British broadleaved woodlands
We report the impact of an extreme weather event, the October 1987 severe storm, on fragmented woodlands in southern Britain. We analysed ecological changes between 1971 and 2002 in 143 200-m2 plots in 10 woodland sites exposed to the storm with an ecologically equivalent sample of 150 plots in 16 non-exposed sites. Comparing both years, understorey plant species-richness, species composition, soil pH and woody basal area of the tree and shrub canopy were measured.
We tested the hypothesis that the storm had deflected sites from the wider national trajectory of an increase in woody basal area and reduced understorey species-richness associated with ageing canopies and declining woodland management. We also expected storm disturbance to amplify the background trend of increasing soil pH, a UK-wide response to reduced atmospheric sulphur deposition. Path analysis was used to quantify indirect effects of storm exposure on understorey species richness via changes in woody basal area and soil pH.
By 2002, storm exposure was estimated to have increased mean species richness per 200 m2 by 32%. Woody basal area changes were highly variable and did not significantly differ with storm exposure.
Increasing soil pH was associated with a 7% increase in richness. There was no evidence that soil pH increased more as a function of storm exposure. Changes in species richness and basal area were negatively correlated: a 3.4% decrease in richness occurred for every 0.1-m2 increase in woody basal area per plot.
Despite all sites substantially exceeding the empirical critical load for nitrogen deposition, there was no evidence that in the 15 years since the storm, disturbance had triggered a eutrophication effect associated with dominance of gaps by nitrophilous species.
Synthesis. Although the impacts of the 1987 storm were spatially variable in terms of impacts on woody basal area, the storm had a positive effect on understorey species richness. There was no evidence that disturbance had increased dominance of gaps by invasive species. This could change if recovery from acidification results in a soil pH regime associated with greater macronutrient availability."Organismic and Evolutionary Biolog
Focus, Vol. 1 No. 1
A literary magazine of student writing published by the Department of English of Stephen F. Austin State College.https://scholarworks.sfasu.edu/focus/1000/thumbnail.jp
Quantifying the impact of an extreme climate event on species diversity in fragmented temperate forests: the effect of the October 1987 storm on British broadleaved woodlands
1. We report the impact of an extreme weather event, the October 1987 severe storm, on fragmented woodlands in southern Britain. We analysed ecological changes between 1971 and 2002 in 143 200-m2 plots in 10 woodland sites exposed to the storm with an ecologically equivalent sample of 150 plots in 16 non-exposed sites. In both years, understorey species-richness, species composition, soil pH and woody basal area of the tree and shrub canopy were measured.
2. We tested the hypothesis that the storm had deflected sites from the wider national trajectory of an increase in woody basal area and reduced understorey species-richness associated with ageing canopies and declining woodland management. We also expected storm disturbance to amplify the background trend of increasing soil pH, a UK-wide response to reduced atmospheric sulphur deposition. Path analysis was used to quantify indirect effects of storm exposure on understorey species richness via changes in woody basal area and soil pH.
3. By 2002, storm exposure was estimated to have increased mean species richness per 200 m2 by 32%. Woody basal area changes were highly variable and did not significantly differ with storm exposure.
4. Increasing soil pH was associated with a 7% increase in richness. There was no evidence that soil pH increased more as a function of storm exposure. Changes in species richness and basal area were negatively correlated: a 3.4% decrease in richness occurred for every 0.1-m2 increase in woody basal area per plot.
5. Despite all sites substantially exceeding the empirical critical load for nitrogen deposition, there was no evidence that in the 15 years since the storm, disturbance had triggered a eutrophication effect associated with dominance of gaps by nitrophilous species.
6. Synthesis: Although the impacts of the 1987 storm were spatially variable in terms of impacts on woody basal area, the storm had a positive effect on understorey species richness. There was no evidence that disturbance had increased dominance of gaps by invasive species. This could change if recovery from acidification results in a soil pH regime associated with greater macronutrient availability
- …
