25 research outputs found

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60_{60} fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low temperature ordered (2×2)(2 \times 2) state, and a high temperature (1×1)(1 \times 1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces.Comment: 4 pages, 2 figure

    Viable compositional analysis of an eleven species oral polymicrobial biofilm

    Get PDF
    Purpose: Polymicrobial biofilms are abundant in clinical disease, particularly within the oral cavity. Creating complex biofilm models that recapitulate the polymicrobiality of oral disease are important in the development of new chemotherapeutic agents. In order to do this accurately we require the ability to undertake compositional analysis, in addition to determine individual cell viability, which is difficult using conventional microbiology. The aim of this study was to develop a defined multispecies denture biofilm model in vitro, and to assess viable compositional analysis following defined oral hygiene regimens. Methods: An in vitro multispecies denture biofilm containing various oral commensal and pathogenic bacteria and yeast was created on poly (methyl methacrylate) (PMMA). Denture hygiene regimens tested against the biofilm model included brushing only, denture cleansing only and combinational brushing and denture cleansing. Biofilm composition and viability were assessed by culture (CFU) and molecular (qPCR) methodologies. Scanning electron microscopy and confocal laser scanning microscopy were also employed to visualize changes in denture biofilms following treatment. Results: Combinational treatment of brushing and denture cleansing had the greatest impact on multispecies denture biofilms, reducing the number of live cells by more than 2 logs, and altering the overall composition in favor of streptococci. This was even more evident during the sequential testing, whereby daily sequential treatment reduced the total and live number of bacteria and yeast more than those treated intermittently. Bacteria and yeast remaining following treatment tended to aggregate in the pores of the PMMA, proving more difficult to fully eradicate the biofilm. Conclusions: Overall, we are the first to develop a method to enable viable compositional analysis of an 11 species denture biofilm following chemotherapeutic challenge. We were able to demonstrate viable cell reduction and changes in population dynamics following evaluation of various denture cleansing regimens. Specifically, it was demonstrated that daily combinational treatment of brushing and cleansing proved to be the most advantageous denture hygiene regimen, however, residual organisms still remained within the pores of PMMA surface, which could act as a reservoir for further biofilm regrowth. We have identified an industry need for denture cleansing agents with the capacity to penetrate these pores and disaggregate these complex biofilm consortia

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    The Effects of Hair-Cell Specific Dysfunction on Neural Coding In the Auditory Periphery

    No full text
    Sensorineural hearing loss (SNHL) is a disease that disrupts the quality of life of millions of people around the world. The term SNHL is in many ways a catchall for several conditions that can result from a wide array of sources, including noise over-exposure, chemical ototoxicity, and aging. Moreover, the specific pattern of degradation can vary dramatically from patient to patient. Two patients presenting similar audiograms can have significantly different ability in speech intelligibility. Both patients may be diagnosed with SNHL, but their cochlea where the damage has occurred remains in many ways a “black box” in terms of diagnostic specificity. This common clinical outcome illustrates the need for additional diagnostic measures, which will require a more detailed understanding of the variety of mechanistic changes that can occur following SNHL. The goal of this work was to investigate several underlying mechanisms of SNHL by selectively perturbing individual components of the peripheral auditory system, specifically the inner and outer hair-cells of the cochlea. This was accomplished by measuring both invasive single-unit and non-invasive evoked neural responses in chinchillas that were administered specific ototoxic drugs. Responses were measured to stimuli ranging from simple tones to more complex sounds, including amplitude- and frequency-modulated tones and broadband noise, which represent fundamental acoustic features of speech and music in real-world environments. This experimental approach made it possible to measure the effects of damage to each cell type on peripheral neural processing in isolation, i.e., without the confounding interactions of damage to other peripheral components that often occurs with noise over-exposure. Inner-hair-cell dysfunction produced subtle or no effects on common threshold measurements, but perceptually relevant effects were predicted for suprathreshold sounds. Frequency-modulated tones may be effective stimuli for inner-hair-cell diagnostics. Changes in distortion-product otoacoustic emissions were predictive of several physiological effects of outer-hair-cell dysfunction

    Generation of a homology model of the human histamine H₃ receptor for ligand docking and pharmacophore-based screening

    Get PDF
    The human histamine H₃ receptor (hH₃R) is a G-protein coupled receptor (GPCR), which modulates the release of various neurotransmitters in the central and peripheral nervous system and therefore is a potential target in the therapy of numerous diseases. Although ligands addressing this receptor are already known, the discovery of alternative lead structures represents an important goal in drug design. The goal of this work was to study the hH3R and its antagonists by means of molecular modelling tools. For this purpose, a strategy was pursued in which a homology model of the hH₃R based on the crystal structure of bovine rhodopsin was generated and refined by molecular dynamics simulations in a dipalmitoylphosphatidylcholine (DPPC)/water membrane mimic before the resulting binding pocket was used for high-throughput docking using the program GOLD. Alternatively, a pharmacophore-based procedure was carried out where the alleged bioactive conformations of three different potent hH₃R antagonists were used as templates for the generation of pharmacophore models. A pharmacophore-based screening was then carried out using the program Catalyst. Based upon a database of 418 validated hH₃R antagonists both strategies could be validated in respect of their performance. Seven hits obtained during this screening procedure were commercially purchased, and experimentally tested in a [³H]Nα-methylhistamine binding assay. The compounds tested showed affinities at hH₃R with Ki values ranging from 0.079 to 6.3 lM
    corecore