1,843 research outputs found

    A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

    Full text link
    A new, computationally- and statistically-efficient algorithm, the Fast χ2\chi^2 algorithm, can find a periodic signal with harmonic content in irregularly-sampled data with non-uniform errors. The algorithm calculates the minimized χ2\chi^2 as a function of frequency at the desired number of harmonics, using Fast Fourier Transforms to provide O(Nlog⁥N)O (N \log N) performance. The code for a reference implementation is provided.Comment: Source code for the reference implementation is available at http://public.lanl.gov/palmer/fastchi.html . Accepted by ApJ. 24 pages, 4 figure

    New forms of short fiction in America.

    Get PDF

    Phase Behavior of Polyelectrolyte-Surfactant Complexes at Planar Surfaces

    Full text link
    We investigate theoretically the phase diagram of an insoluble charged surfactant monolayer in contact with a semi-dilute polyelectrolyte solution (of opposite charge). The polyelectrolytes are assumed to have long-range and attractive (electrostatic) interaction with the surfactant molecules. In addition, we introduce a short-range (chemical) interaction which is either attractive or repulsive. The surfactant monolayer can have a lateral phase separation between dilute and condensed phases. Three different regimes of the coupled system are investigated depending on system parameters. A regime where the polyelectrolyte is depleted due to short range repulsion from the surface, and two adsorption regimes, one being dominated by electrostatics, whereas the other by short range chemical attraction (similar to neutral polymers). When the polyelectrolyte is more attracted (or at least less repelled) by the surfactant molecules as compared with the bare water/air interface, it will shift upwards the surfactant critical temperature. For repulsive short-range interactions the effect is opposite. Finally, the addition of salt to the solution is found to increase the critical temperature for attractive surfaces, but does not show any significant effect for repulsive surfaces.Comment: 23 pages, 10 figure

    Propagation of acoustic-gravity waves in the atmosphere

    Get PDF
    Homogeneous wave guide theory is used to derive dispersion curves, vertical pressure distributions, and synthetic barograms for atmospheric waves. A complicated mode structure is found involving both gravity and acoustic waves. Various models of the atmosphere are studied to explore seasonal and geographic effects on pulse propagation. The influence of different zones in the atmosphere on the character of the barograms is studied. It is found that the first arriving waves are controlled by the properties of the lower atmospheric channel. Comparison of theoretical results and experimental data from large thermonuclear explosions is made in the time and frequency domains, and the following conclusions are reached: (1) The major features on barograms are due to dispersion; (2) superposition of several modes is needed to explain observed features; (3) scatter of data outside the range permitted by extreme atmospheric models shows the influence of winds for A1; wind effects and higher modes are less important for A_2 waves. A discussion is included on atmospheric terminations and how these affect dispersion curves

    Characterizing Quantum-Dot Blinking Using Noise Power Spectra

    Full text link
    Fluctuations in the fluorescence from macroscopic ensembles of colloidal semiconductor quantum dots have the spectral form of 1/f noise. The measured power spectral density reflects the fluorescence intermittency of individual dots with power-law distributions of "on" and "off" times, and can thus serve as a simple method for characterizing such blinking behavior

    The Krakatoa Air-Sea Waves: an Example of Pulse Propagation in Coupled Systems

    Get PDF
    The theory of pulse propagation in an atmosphere coupled to an ocean is applied to the air-sea waves excited by the explosion of the volcano Krakatoa. Numerical results for a realistic atmosphere-ocean system show that the principal air pulse corresponds to the fundamental gravity mode GR_0. A small sea wave is associated with the mode GW_0 with phase velocities close to the √(gh) velocity of the ocean. Free waves with this velocity exist in the atmosphere and transfer energy to the ocean in an efficient manner. These air waves ‘jump’ over land barriers and re-excite the sea waves. An explosion of 100–150 megatons is required to produce the equivalent of the Krakatoa pressure disturbance

    Numerical simulations of generic singuarities

    Full text link
    Numerical simulations of the approach to the singularity in vacuum spacetimes are presented here. The spacetimes examined have no symmetries and can be regarded as representing the general behavior of singularities. It is found that the singularity is spacelike and that as it is approached, the spacetime dynamics becomes local and oscillatory.Comment: typos correcte

    Lower Bounds on Mutual Information

    Get PDF
    We correct claims about lower bounds on mutual information (MI) between real-valued random variables made in A. Kraskov {\it et al.}, Phys. Rev. E {\bf 69}, 066138 (2004). We show that non-trivial lower bounds on MI in terms of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show with gene expression data that these bounds are in general non-trivial, and the degree of their (non-)saturation yields valuable insight.Comment: 4 page

    Non-modal approach to linear theory: marginal stability and the dissipation of turbulent fluctuations

    Full text link
    The non-modal approach for a linearized system differs from a normal mode analysis by following the temporal evolution of some perturbed equilibria, and therefore includes transient effects. We employ a non-modal approach for studying the stability of a bi-Maxwellian magnetized plasma using the Landau fluid model, which we briefly describe. We show that bi-Maxwellian stable equilibria can support transient growth of some physical quantities, and we study how these transients behave when an equilibrium approaches its marginally stable condition. This is relevant to anisotropic plasma, that are often observed in the solar wind with a temperature anisotropy close to values that can trigger a kinetic instability. The results obtained with a non-modal approach are relevant to a re-examination of the concept of linear marginal stability. Moreover, we discuss the topic of the dissipation of turbulent fluctuations, suggesting that the non-modal approach should be included in future studies.Comment: 11 pages, 6 figure
    • 

    corecore