367 research outputs found
Services and the new economic landscape
The growth of the service economy in advanced and developing economies has created what are now being referred to as New Economic Landscapes. These landscapes are not only built forms, they are job generators and new sources of economic power for the regions that house them. This service economy is variegated, with differing sources of demand, and varying geographies of supply. A dynamic element in this mileaux is the evolving producer service complex--an amalgum of financial, business, legal, and professional services, which have had rapid expansion in most parts of the global economy. Existing conceptual paradigms in regional science have not fully acknowledged the manifold importances of The New Economic Landscape--they have essentially danced around it. In this paper we zero in on the central role of services, as well as primary and secondary industries, in the current economic era, relating on the one hand the expansion of information-oriented producer services to patterns of evolution in goods producing primary and secondary industries, as well as placing these dynamic producer service sectors in context of the ongoing expansion of the larger service sector. The goal of this paper is to make clear the regional development implications of the complex processes of service industry development occuring globally, while simultaneously speaking to the implications of this transformation for regions and theory in regional science. In this regard we build on recent conceptualizations of the role of industrial and information networks, economic underpinnings of regional economies, new perspectives on entrepreneurial activity, and behaviors which we have documented are important to the success of service industries on the New Economic Landscape. In doing so, we take advantage of and extend conceptualizations which have been developed largely in management science as they bear on firm-level performance, and marry these ideas with the emerging literature on the importance of the vital position of regions in the so-called global economy.
Reactivity of commercially available Fmoc amino acids: supplementary information
Supplementary Information: Experimental Procedures, Analytical LCMS of compounds, Mass spectrum molecular formula report
Facile synthesis of mono- and bis-methylated Fmoc-Dap, -Dab and -Orn amino acids
A new methodology for the synthesis of side chain mono- or bis-methylated Fmoc-Dap, -Dab and -Orn amino acids was developed by probing the reactivity of commercially available Fmoc amino acids
Resistance of subarctic soil fungal and invertebrate communities to disruption of below-ground carbon supply
The supply of recent photosynthate from plants to soils is thought to be a critical mechanism regulating the activity and diversity of soil biota. In the Arctic, large-scale vegetation transitions are underway in response to warming, and there is an urgent need to understand how these changes affect soil biodiversity and function. We investigated how abundance and diversity of soil fungi and invertebrates responded to a reduction in fresh below-ground photosynthate supply in treeline birch and willow, achieved using stem girdling. We hypothesised that birch forest would support greater abundance of ectomycorrhizal (ECM) fungal species and fauna than willow shrubs, and that girdling would result in a rapid switch from ECM fungi to saprotrophs as canopy supply of C was cut, with a concomitant decline in soil fauna. Birch forest had greater fungal and faunal abundance with a large contribution of root-associated ascomycetes (ericoid mycorrhizal fungi and root endophytes) compared to willow shrub plots, which had a higher proportion of saprotrophs and, contrary to our expectations, ECM fungi. Broad-scale soil fungal and faunal functional group composition was not significantly changed by girdling, even in the third year of treatment. Within the ECM community, there were some changes, with genera that are believed to be particularly C-demanding declining in girdled plots. However, it was notable how most ECM fungi remained present after 3 years of isolation of the below-ground compartment from contemporary photosynthate supply. Synthesis. In a treeline/tundra ecosystem, distinct soil communities existed in contrasting vegetation patches within the landscape, but the structure of these communities was resistant to canopy disturbance and concomitant reduction of autotrophic C inputs
Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape
In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks are predominantly located below ground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. To identify the role of canopy‐forming species in below‐ground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and below‐ground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53% ‐double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic since productivity and ecosystem C sequestration are not synonymous
Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA
Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA
Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase
To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.National Institutes of Health (U.S.) (grant no. P30-ES002109)National Institutes of Health (U.S.) (grant no. GM65337)National Institutes of Health (U.S.) (grant no. GM65337-03S2)National Institutes of Health (U.S.) (grant no. CA055042)National Institutes of Health (U.S.) (grant no. CA092584)Repligen Corporation (KIICR Graduate Fellowship
A role for VEGF as a negative regulator of pericyte function and vessel maturation.
Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation
STAT5 induces miR-21 expression in cutaneous T cell lymphoma
In cutaneous T cell lymphomas (CTCL), miR-21 is aberrantly expressed in skin and peripheral blood and displays anti-apoptotic properties in malignant T cells. It is, however, unclear exactly which cells express miR-21 and what mechanisms regulate miR-21. Here, we demonstrate miR-21 expression in situ in both malignant and reactive lymphocytes as well as stromal cells. qRT-PCR analysis of 47 patients with mycosis fungoides (MF) and Sezary Syndrome (SS) confirmed an increased miR-21 expression that correlated with progressive disease. In cultured malignant T cells miR-21 expression was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS T cells and cultured cytokine-dependent SS cells (SeAx). siRNA-mediated depletion of STAT5 inhibited constitutive- and IL-2-induced miR-21 expression in cytokine-independent and dependent T cell lines, respectively. IL-15 and IL-2 were more potent than IL-21 in inducing miR-21 expression in the cytokine-dependent T cells. In conclusion, we provide first evidence that miR-21 is expressed in situ in CTCL skin lesions, induced by IL-2 and IL-15 cytokines, and is regulated by STAT5 in malignant T cells. Thus, our data provide novel evidence for a pathological role of IL-2Rg cytokines in promoting expression of the oncogenic miR-21 in CTCL
- …