257 research outputs found
Design of a Combined Beacon Receiver and Digital Radiometer for 40 GHz Propagation Measurements at the Madrid Deep Space Communications Complex
NASA Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL) have jointly developed an atmospheric propagation terminal to measure and characterize propagation phenomena at 40 GHz at the Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela, Spain. The hybrid Q-band system combines a 40 GHz beacon receiver and digital radiometer into the same RF front-end and observes the 39.402 GHz beacon of the European Space Agencys Alphasat Aldo Paraboni TDP5 experiment. The goals of these measurements are to assist MDSCC mission operations as well as to contribute to the development and improvement of International Telecommunications Union (ITU) models for prediction of communications systems performance within the Q-band. Herein, we provide an overview of the system design, characterization, and plan of operations to commence at the MDSCC beginning in March 2017
Phase Fluctuations at Goldstone Derived from 1-Year Site Testing Interferometer Data
A two-element site test interferometer has been deployed at the NASA Deep Space Network (DSN) tracking complex in Goldstone, California, since May 2007. The interferometer system consists of two offset-fed 1.2 m parabolic reflectors which monitor atmospheric-induced amplitude and phase fluctuations on an unmodulated beacon signal (20.199 GHz) broadcast from a geostationary satellite (Anik F2). The geometry of the satellite and the ground-based infrastructure imposes a 48.5 elevation angle with a separation distance of 256 m along an east-west baseline. The interferometer has been recording phase fluctuation data, to date, for 1 yr with an overall system availability of 95 percent. In this paper, we provide the cumulative distribution functions (CDFs) for 1 year of recorded data, including phase rms, spatial structure function exponent, and surface meteorological measurements: surface wind speed, relative humidity, temperature, barometric pressure, and rain rate. Correlation between surface measurements, phase rms, and amplitude rms at different time scales are discussed. For 1 year, phase fluctuations at the DSN site in Goldstone, are better than 23 for 90 percent of the time (at 48.5 elevation). This data will be used to determine the suitability of the Goldstone site as a location for the Next Generation Deep Space Network
Data Processing for Atmospheric Phase Interferometers
This paper presents a detailed discussion of calibration procedures used to analyze data recorded from a two-element atmospheric phase interferometer (API) deployed at Goldstone, California. In addition, we describe the data products derived from those measurements that can be used for site intercomparison and atmospheric modeling. Simulated data is used to demonstrate the effectiveness of the proposed algorithm and as a means for validating our procedure. A study of the effect of block size filtering is presented to justify our process for isolating atmospheric fluctuation phenomena from other system-induced effects (e.g., satellite motion, thermal drift). A simulated 24 hr interferometer phase data time series is analyzed to illustrate the step-by-step calibration procedure and desired data products
Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA
To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band
Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung
Cytomegalovirus vectors are promising delivery vehicles for vaccine strategies that aim to elicit effector CD8+ T cells. To determine how the route of immunization affects CD8+ T cell responses in the lungs of mice vaccinated with a murine cytomegalovirus vector expressing the respiratory syncytial virus matrix (M) protein, we infected CB6F1 mice via the intranasal or intraperitoneal route and evaluated the M-specific CD8+ T cell response at early and late time points. We found that intranasal vaccination generated robust and durable tissue-resident effector and effector memory CD8+ T cell populations that were undetectable after intraperitoneal vaccination. The generation of these antigen-experienced cells by intranasal vaccination resulted in earlier T cell responses, interferon gamma secretion, and viral clearance after respiratory syncytial virus challenge. Collectively, these findings validate a novel approach to vaccination that emphasizes the route of delivery as a key determinant of immune priming at the site of vulnerability
Statistical mechanics of neural networks and combinatorial optimization problems
Local learning neural networks have long been limited by their inability to store correlated patterns. A common parameter used to specify the capacity of a network i
AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept
We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within a New Frontiers budget
Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies
Increased external nutrient loads of anthropogenic origin, especially those of phosphorus (P), were one of the major causes of eutrophication during the first half of the twentieth century in Europe. They led to deterioration of lake ecosystems, particularly including noxious blooms of (potentially toxic) cyanobacteria. From the 1970–1980s, strategies to decrease the phosphorus loads from sewage were increasingly implemented, among them are the ban of phosphates in detergents, the expansion of sewer systems and improvement in wastewater treatment to remove nutrients. Case studies of eight lakes, whose response to point source reduction of phosphorus was observed over decades, show that a pronounced reduction of the phosphorus load from point sources can be achieved either by the diversion of inflows carrying high loads, by upgraded sewage treatment, or by phosphorus precipitation in the major tributary directly before its inflow into the water body. Outcomes demonstrate that in order to effectively control cyanobacterial blooms, the measures taken need to reduce in-lake concentrations of total phosphorus below 20–50 µg L−1, with this threshold varying somewhat between lakes depending in particular on hydromorphological and biological conditions. Whether and when load reduction succeeds in controlling cyanobacteria depends primarily on the load remaining after remediation and on the water residence time
Environments of Luminous Low-frequency Radio Galaxies Since Cosmic Noon: Jet-mode Feedback Dominates in Groups
Coupling between relativistic jets launched by accreting supermassive black holes and the surrounding gaseous media is a vital ingredient in galaxy evolution models. To constrain the environments in which this feedback takes place over cosmic time, we study the host-halo properties of luminous low-frequency radio galaxies (L 150 MHz ≳ 1025.25 W Hz−1) selected with the International Low-Frequency Array Telescope out to z ∼ 2 through tomographic clustering and cosmic microwave background lensing measurements. We find that these systems occupy halos characteristic of galaxy groups (M h = 1013–1014 h −1 M ⊙), evolving at a rate consistent with the mean growth rate of halos over the past ∼10 Gyr. The coevolution of the clustering and the luminosity function reveals that the duty cycle of these systems is of order ∼10% but has been mildly increasing since z ∼ 2, while the duty cycle of quasars has been declining. We estimate the characteristic kinetic heating power injected by powerful jets per halo as a function of mass, and compare to the same quantity injected by quasar winds. We find that powerful jet heating dominates over quasar winds in halos M h ≳ 1013 h −1 M ⊙ at z < 2. These results conform to the paradigm of galaxy evolution in which mechanical jet power feedback is the dominant heating mechanism of the gas content of groups and clusters
- …
