189 research outputs found

    Power conversion architecture for grid interface at high switching frequency

    Get PDF
    This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and high power factor, without the need for electrolytic capacitors. It comprises of a line-frequency rectifier, a stack of capacitors, a set of regulating converters, and a power combining converter (or set of power combining converters). The regulating converters have inputs connected to capacitors on the capacitor stack, and provide regulated outputs while also achieving high power factor, with twice-line-frequency energy buffered on the capacitor stack. The power combining converter combines power from the individual regulated outputs to a single output, and may also provide isolation. While this architecture can be utilized with a variety of circuit topologies, it is especially suited for systems operating at HF (above 3 MHz), and we introduce circuit implementations that enable efficient operation in this range. The proposed approach is demonstrated for an LED driver operating from 120 V[subscript ac], and supplying a 35 V, 30 W output. The prototype converter operates at a (variable) switching frequency of 5-10 MHz and an efficiency of > 93%. The converter achieves a displacement power density of 130 W/in[superscript 3], while providing a 0.89 power factor, without the use of electrolytic capacitors

    Two-stage power conversion architecture for an LED driver circuit

    Get PDF
    This paper presents a merged-two-stage circuit topology suitable for efficient LED drivers operating from either wide-range dc input voltage or ac line voltage. This two-stage topology is based on a soft-charged switched-capacitor pre-regulator/transformation stage and a high-frequency magnetic regulator stage. Soft charging of the switched capacitor circuit, zero voltage switching of the high-frequency regulator circuit, and time-based indirect scale current control are used to maintain high efficiency, high power density, and high power factor. Two implementations of the proposed architecture are demonstrated: a wide input voltage range dc-dc converter and a line interfaced ac-dc converter. The dc-dc converter shows 85–95% efficiency at 20 W power across 25–200 V input voltage range, and the ac-dc converter achieves 88% efficiency with 0.93 power factor at 8.4 W average power

    Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage

    Get PDF
    This paper presents a merged-two-stage circuit topology suitable for either wide-range dc input voltage or ac line voltage at low-to-moderate power levels (e.g., up to 30 W). This two-stage topology is based on a soft-charged switched-capacitor preregulator/transformation stage and a high-frequency magnetic regulator stage. Soft charging of the switched capacitor circuit, zero voltage switching of the high-frequency regulator circuit, and time-based indirect current control are used to maintain high efficiency, high power density, and high power factor. The proposed architecture is applied to an LED driver circuit, and two implementations are demonstrated: a wide input voltage range dc-dc converter and a line interfaced ac-dc converter. The dc-dc converter shows 88%-96% efficiency at 30-W power across 25-200-V input voltage range, and the ac-dc converter achieves 88% efficiency with 0.93 power factor at 8.4-W average power. Contributions of this paper include: 1) demonstrating the value of a merged two-stage architecture to provide substantial design benefits in high-input voltage, low-power step down conversion applications, including both wide-range-input dc-dc and line-input ac-dc systems; 2) introduction of a multimode soft-charged SC stage for the merged architecture that enables compression of an 8:1 input voltage range into a 2:1 intermediate range, along with its implementation, loss considerations, and driving methods; and 3) merging of this topology with an resonant transition discontinuous-mode inverted buck stage and pseudocurrent control to enable step-down power conversion (e.g., for LED lighting) operating at greatly increased frequencies and reduced magnetics size than with more conventional approaches

    Impedance Control Network Resonant dc-dc Converter for Wide-Range High-Efficiency Operation

    Get PDF
    This paper introduces a new resonant converter architecture that utilizes multiple inverters and a lossless impedance control network (ICN) to maintain zero voltage switching (ZVS) and near zero current switching (ZCS) across wide operating ranges. Hence, the ICN converter is able to operate at fixed frequency and maintain high efficiency across wide ranges in input and output voltages and output power. The ICN converter architecture enables increase in switching frequency (hence reducing size and mass) while achieving very high efficiency. Three prototype 200 W, 500 kHz ICN resonant converters, one with low-Q, one with medium-Q and one with high-Q resonant tanks, designed to operate over an input voltage range of 25 V to 40 V and an output voltage range of 250 V to 400 V are built and tested. The low-Q prototype ICN converter achieves a peak efficiency of 97.1%, maintains greater than 96.4% full power efficiency at 250 V output voltage across the nearly 2:1 input voltage range, and maintains full power efficiency above 95% across its full input and output voltage range. It also maintains efficiency above 94.6% over a 10:1 output power range across its full input and output voltage range owing to the use of burst-mode control.National Science Foundation (U.S.) (Award 1307699

    Design and evaluation of a reconfigurable stacked active bridge dc/dc converter for efficient wide load-range operation

    Get PDF
    This paper presents the design and implementation of a large-step-down soft-switched dc-dc converter based on the active bridge technique which overcomes some of the limitations of the conventional Dual Active Bridge (DAB) converter. The topology comprises a double stacked-bridge inverter coupled to a reconfigurable rectifier through a special three-winding leakage transformer. This particular combination of stages enable the converter to run in an additional low-power mode that greatly increases light-load efficiency by reducing core loss and extending the zero-voltage switching (ZVS) range. The converter is implemented with a single compact magnetic component, providing power combining, voltage transformation, isolation, and energy transfer inductance. A 175 kHz, 300 W, 380 V to 12 V GaN-based prototype converter achieves 95.9% efficiency at full load, a peak efficiency of 97.0%, an efficiency above 92.7% down to 10% load and an efficiency above 79.8% down to 3.3% load.National Science Foundation (U.S.) (Award Number 1307699)MIT Skoltech Initiativ

    Impedance Control Network Resonant Step-Down DC-DC Converter Architecture

    Get PDF
    In this paper, we introduce a step-down resonant dc-dc converter architecture based on the newly-proposed concept of an Impedance Control Network (ICN). The ICN architecture is designed to provide zero-voltage and near-zero-current switching of the power devices, and the proposed approach further uses inverter stacking techniques to reduce the voltages of individual devices. The proposed architecture is suitable for large-step-down, wide-input-range applications such as dc-dc converters for dc distribution in data centers. We demonstrate a first-generation prototype ICN resonant dc-dc converter that can deliver 330 W from a wide input voltage range of 260 V – 410 V to an output voltage of 12 V.MIT Skoltech InitiativeMIT Energy InitiativeNational Science Foundation (U.S.) (Award 1307699)Texas Instruments Incorporated (Graduate Women's Fellowship for Leadership in Microelectronics

    New AC-DC Power Factor Correction Architecture Suitable for High Frequency Operation

    Get PDF
    This paper presents a novel ac-dc power factor correction (PFC) power conversion architecture for single-phase grid interface. The proposed architecture has significant advantages for achieving high efficiency, good power factor, and converter miniaturization, especially in low-to-medium power applications. The architecture enables twice-line-frequency energy to be buffered at high voltage with a large voltage swing, enabling reduction in the energy buffer capacitor size, and elimination of electrolytic capacitors. While this architecture can be beneficial with a variety of converter topologies, it is especially suited for system miniaturization by enabling designs that operate at high frequency (HF, 3 – 30 MHz). Moreover, we introduce circuit implementations that provide efficient operation in this range. The proposed approach is demonstrated for an LED driver converter operating at a (variable) HF switching frequency (3 – 10 MHz) from 120Vac, and supplying a 35Vdc output at up to 30W. The prototype converter achieves high efficiency (92%) and power factor (0.89), and maintains good performance over a wide load range. Owing to architecture and HF operation, the prototype achieves a high ‘box’ power density of 50W/ in3 (‘displacement’ power density of 130W/ in3), with miniaturized inductors, ceramic energy buffer capacitors, and a small-volume EMI filter.United States. Advanced Research Projects Agency-Energy. Agile Delivery of Electrical Power TechnologyTexas Instruments Incorporate

    Controlled Assembly of Macromolecular β-Sheet Fibrils

    Get PDF
    Construction of functional molecular devices by directed assembly processes is one of the main challenges in the field of nanotechnology. Many approaches to this challenge use biological assembly as a source of inspiration for the build up of new materials with controlled organization at the nanoscale. In particular, the self-assembly properties of β-sheet peptides have been used in the design of supramolecular materials, such as tapes, nanotubes, and fibrils

    Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot

    Get PDF
    This paper presents the design principles for highly efficient legged robots, the implementation of the principles in the design of the MIT Cheetah, and the analysis of the high-speed trotting experimental results. The design principles were derived by analyzing three major energy-loss mechanisms in locomotion: heat losses from the actuators, friction losses in transmission, and the interaction losses caused by the interface between the system and the environment. Four design principles that minimize these losses are discussed: employment of high torque-density motors, energy regenerative electronic system, low loss transmission, and a low leg inertia. These principles were implemented in the design of the MIT Cheetah; the major design features are large gap diameter motors, regenerative electric motor drivers, single-stage low gear transmission, dual coaxial motors with composite legs, and the differential actuated spine. The experimental results of fast trotting are presented; the 33-kg robot runs at 22 km/h (6 m/s). The total power consumption from the battery pack was 973 W and resulted in a total cost of transport of 0.5, which rivals running animals' at the same scale. 76% of the total energy consumption is attributed to heat loss from the motor, and the remaining 24% is used in mechanical work, which is dissipated as interaction loss as well as friction losses at the joint and transmission.United States. Defense Advanced Research Projects Agency (M3 Program

    Editorial: Qualitative Forschung und interkulturelle Kommunikation

    Get PDF
    El artículo presenta el horizonte temático y los artículos de este volumen especial y explica algunas diferencias terminológicas importantes en el campo de la investigación intercultural. El objetivo esencial de este volumen es explorar las diversas formas de aplicar y reflexionar sobre los métodos de investigación cualitativa en el contexto de la comunicación intercultural. Se trata tanto de la discusión acerca de las características genuinas de la investigación intercultural como de intentos por identificar puntos y conexiones comunes de este campo de investigación específico con tradiciones de investigación interpretativas generales, englobadas dentro de la investigación social cualitativa. URN: urn:nbn:de:0114-fqs0901342This article introduces to the thematic scope and the articles of this special issue and it explains some important terminological distinctions of the intercultural research field. The overall aim of this issue is to explore the manifold ways to apply and to reflect upon qualitative research methods in the context of intercultural communication. This implies both a discussion of genuine characteristics of intercultural qualitative research as well as attempts to identify common features and linkages of this special area with more general interpretative research traditions under the "umbrella" of qualitative social research. URN: urn:nbn:de:0114-fqs0901342Der Beitrag führt in die Themenstellungen des Schwerpunktes sowie die Beiträge des Bandes ein und klärt über einige wichtige begriffliche Differenzierungen im Feld der interkulturellen Forschung auf. Ziel der Schwerpunktausgabe ist die Erkundung von Verwendungsformen und Reflexionen qualitativer Forschungsansätze im Kontext interkultureller Kommunikation. Dabei geht es sowohl um die Darstellung von Besonderheiten einer genuin interkulturellen Forschung als auch um die Identifikation von Gemeinsamkeiten und Anschlüssen dieses speziellen Forschungsgebietes an allgemeine interpretative Forschungstraditionen unter dem "Dach" der qualitativen Sozialforschung. URN: urn:nbn:de:0114-fqs090134
    • …
    corecore