1,130 research outputs found

    High-accuracy differential image motion monitor measurements for the Thirty Meter Telescope site testing program

    Get PDF
    Differential image motion monitors (DIMMs) have become the industry standard for astronomical site characterization. The calibration of DIMMs is generally considered to be routine, but we show that particular care must be paid to this issue if high-accuracy measurements are to be achieved. In a side by side comparison of several DIMMs, we demonstrate that with proper care we can achieve an agreement between the seeing measurements of two DIMMS operating under the same conditions to better than ±0.02 arc sec

    Evaluation of Rodent Spaceflight in the NASA Animal Enclosure Module for an Extended Operational Period (up to 35 days)

    Get PDF
    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting for shuttle flight missions, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats

    An analysis of light pollution at the Thirty Meter Telescope candidate sites

    Get PDF
    Light pollution can create difficulties for astronomers attempting to observe faint objects in the night sky. Light from a local small town can be just as intrusive as light from a large city in the distance. As the population of the Earth increases, light pollution will become more of a problem, even in remote areas. The Thirty Meter Telescope site testing program has measured light pollution at the candidate sites by using all sky cameras; an analysis procedure enhances the all sky camera images to make the determination of the effects of the light pollution. This paper summarizes the light pollution analysis procedure and current results, which are that light pollution is currently unimportant for TMT to select a site for the final telescope location

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Profession Based Hierarchies as Barriers for Genuine Learning Processes

    Get PDF
    Under embargo until: 2021-06-26This chapter describes how profession based hierarchies (stratified social orders between professions) may appear in a teaching context of interprofessionality involving a variety of health professions presenting challenges to learning and offers suggestions on how these challenges can be overcome.acceptedVersio

    Mutations associated with progression in follicular lymphoma predict inferior outcomes at diagnosis: Alliance A151303

    Get PDF
    Follicular lymphoma (FL) is clinically heterogeneous, with select patients tolerating extended watch-and-wait, whereas others require prompt treatment, suffer progression of disease within 24 months of treatment (POD24), and/or experience aggressive histologic transformation (t-FL). Because our understanding of the relationship between genetic alterations in FL and patient outcomes remains limited, we conducted a clinicogenomic analysis of 370 patients with FL or t-FL (from Cancer and Leukemia Group B/Alliance trials 50402/50701/50803, or real-world cohorts from Washington University School of Medicine, Cleveland Clinic, or University of Miami). FL subsets by grade, stage, watch-and-wait, or POD24 status did not differ by mutation burden, whereas mutation burden was significantly higher in relapsed/refractory (rel/ref) FL and t-FL than in newly diagnosed (dx) FL. Nonetheless, mutation burden in dx FL was not associated with frontline progression-free survival (PFS). CREBBP was the only gene more commonly mutated in FL than in t-FL yet mutated CREBBP was associated with shorter frontline PFS in FL. Mutations in 20 genes were more common in rel/ref FL or t-FL than in dx FL, including 6 significantly mutated genes (SMGs): STAT6, TP53, IGLL5, B2M, SOCS1, and MYD88. We defined a mutations associated with progression (MAP) signature as ≥2 mutations in these 7 genes (6 rel/ref FL or t-FL SMGs plus CREBBP). Patients with dx FL possessing a MAP signature had shorter frontline PFS, revealing a 7-gene set offering insight into FL progression risk potentially more generalizable than the m7-Follicular Lymphoma International Prognostic Index (m7-FLIPI), which had modest prognostic value in our cohort. Future studies are warranted to validate the poor prognosis associated with a MAP signature in dx FL, potentially facilitating novel trials specifically in this high-risk subset of patients

    A method for successful collection of multicores and gravity cores from Antarctic subglacial lakes

    Get PDF
    During the 2018–2019 Antarctic field season, the Subglacial Antarctic Lakes Scientific Access project team cleanly accessed Mercer Subglacial Lake, West Antarctica, to sample water and sediments beneath 1087 m of overlying ice. A multicorer was successful in sampling the sediment–water interface, with 4 deployments retrieving 10 cores between 0.3 and 0.4 m in length. Gravity coring was also successful, retrieving cores of 0.97 and 1.78 m in glacial diamict. However, sediment cores retrieved by the gravity cores were shorter than the core barrel penetration (as measured by mud streaks on the outside of the coring system), indicating that the system can likely be improved. This manuscript describes the design, implementation, successes, and lessons learned while coring sediments in a subglacial lake
    corecore