47 research outputs found

    Stability of a Long Noncoding Viral RNA Depends on a 9-nt Core Element at the RNA 5' End to Interact with Viral ORF57 and Cellular PABPC1

    Get PDF
    Kaposi sarcoma-associated herpesvirus (KSHV) ORF57, also known as Mta (mRNA transcript accumulation), enhances viral intron-less transcript accumulation and promotes splicing of intron-containing viral RNA transcripts. In this study, we identified KSHV PAN, a long non-coding polyadenylated nuclear RNA as a main target of ORF57 by a genome-wide CLIP (cross-linking and immunoprecipitation) approach. KSHV genome lacking ORF57 expresses only a minimal amount of PAN. In cotransfection experiments, ORF57 alone increased PAN expression by 20-30-fold when compared to vector control. This accumulation function of ORF57 was dependent on a structured RNA element in the 5' PAN, named MRE (Mta responsive element), but not much so on an ENE (expression and nuclear retention element) in the 3' PAN previously reported by other studies. We showed that the major function of the 5' PAN MRE is increasing the RNA half-life of PAN in the presence of ORF57. Further mutational analyses revealed a core motif consisting of 9 nucleotides in the MRE-II , which is responsible for ORF57 interaction and function. The 9-nt core in the MRE-II also binds cellular PABPC1, but not the E1B-AP5 which binds another region of the MRE-II. In addition, we found that PAN RNA is partially exportable in the presence of ORF57. Together, our data provide compelling evidence as to how ORF57 functions to accumulate a non-coding viral RNA in the course of virus lytic infection

    Effect of Inhibition of the Lysophosphatidic Acid Receptor 1 on Metastasis and Metastatic Dormancy in Breast Cancer

    Get PDF
    Background Previous studies identified the human nonmetastatic gene 23 (NME1, hereafter Nm23-H1) as the first metastasis suppressor gene. An inverse relationship between Nm23-H1 and expression of lysophosphatidic acid receptor 1 gene (LPAR1, also known as EDG2 or hereafter LPA1) has also been reported. However, the effects of LPA1 inhibition on primary tumor size, metastasis, and metastatic dormancy have not been investigated. Methods The LPA1 inhibitor Debio-0719 or LPA1 short hairpinned RNA (shRNA) was used. Primary tumor size and metastasis were investigated using the 4T1 spontaneous metastasis mouse model and the MDA-MB-231T experimental metastasis mouse model (n = 13 mice per group). Proliferation and p38 intracellular signaling in tumors and cell lines were determined by immunohistochemistry and western blot to investigate the effects of LPA1 inhibition on metastatic dormancy. An analysis of variance-based two-tailed t test was used to determine a statistically significant difference between treatment groups. Results In the 4T1 spontaneous metastasis mouse model, Debio-0719 inhibited the metastasis of 4T1 cells to the liver (mean = 25.2 liver metastases per histologic section for vehicle-treated mice vs 6.8 for Debio-0719-treated mice, 73.0% reduction, P < .001) and lungs (mean = 6.37 lesions per histologic section for vehicle-treated mice vs 0.73 for Debio-0719-treated mice, 88.5% reduction, P < .001), with no effect on primary tumor size. Similar results were observed using the MDA-MB-231T experimental pulmonary metastasis mouse model. LPA1 shRNA also inhibited metastasis but did not affect primary tumor size. In 4T1 metastases, but not primary tumors, expression of the proliferative markers Ki67 and pErk was reduced by Debio-0719, and phosphorylation of the p38 stress kinase was increased, indicative of metastatic dormancy. Conclusion The data identify Debio-0719 as a drug candidate with metastasis suppressor activity, inducing dormancy at secondary tumor site

    Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab. Initial experience

    Get PDF
    To retrospectively compare three dynamic contrast material-enhanced magnetic resonance (MR) imaging (dynamic MR imaging) analytic methods to determine the parameter or combination of parameters most strongly associated with changes in tumor microvasculature during treatment with bevacizumab alone and bevacizumab plus chemotherapy in patients with inflammatory or locally advanced breast cancer. MATERIALS AND METHODS: This study was conducted in accordance with the institutional review board of the National Cancer Institute and was compliant with the Privacy Act of 1974. Informed consent was obtained from all patients. Patients with inflammatory or locally advanced breast cancer were treated with one cycle of bevacizumab alone (cycle 1) followed by six cycles of combination bevacizumab and chemotherapy (cycles 2-7). Serial dynamic MR images were obtained, and the kinetic parameters measured by using three dynamic analytic MR methods (heuristic, Brix, and general kinetic models) and two region-of-interest strategies were compared by using two-sided statistical tests. A P value of .01 was required for significance. RESULTS: In 19 patients, with use of a whole-tumor region of interest, the authors observed a significant decrease in the median values of three parameters measured from baseline to cycle 1: forward transfer rate constant (Ktrans) (-34% relative change, P=.003), backflow compartmental rate constant extravascular and extracellular to plasma (Kep) (-15% relative change, P<.001), and integrated area under the gadolinium concentration curve (IAUGC) at 180 seconds (-23% relative change, P=.009). A trend toward differences in the heuristic slope of the washout curve between responders and nonresponders to therapy was observed after cycle 1 (bevacizumab alone, P=.02). The median relative change in slope of the wash-in curve from baseline to cycle 4 was significantly different between responders and nonresponders (P=.009). CONCLUSION: The dynamic contrast-enhanced MR parameters Ktrans, Kep, and IAUGC at 180 seconds appear to have the strongest association with early physiologic response to bevacizumab. Clinical trial registration no. NCT0001654

    A Central Role for Foxp3+ Regulatory T Cells in K-Ras-Driven Lung Tumorigenesis

    Get PDF
    BACKGROUND: K-Ras mutations are characteristic of human lung adenocarcinomas and occur almost exclusively in smokers. In preclinical models, K-Ras mutations are necessary for tobacco carcinogen-driven lung tumorigenesis and are sufficient to cause lung adenocarcinomas in transgenic mice. Because these mutations confer resistance to commonly used cytotoxic chemotherapies and targeted agents, effective therapies that target K-Ras are needed. Inhibitors of mTOR such as rapamycin can prevent K-Ras-driven lung tumorigenesis and alter the proportion of cytotoxic and Foxp3+ regulatory T cells, suggesting that lung-associated T cells might be important for tumorigenesis. METHODS: Lung tumorigenesis was studied in three murine models that depend on mutant K-Ras; a tobacco carcinogen-driven model, a syngeneic inoculation model, and a transgenic model. Splenic and lung-associated T cells were studied using flow cytometry and immunohistochemistry. Foxp3+ cells were depleted using rapamycin, an antibody, or genetic ablation. RESULTS: Exposure of A/J mice to a tobacco carcinogen tripled lung-associated Foxp3+ cells prior to tumor development. At clinically relevant concentrations, rapamycin prevented this induction and reduced lung tumors by 90%. In A/J mice inoculated with lung adenocarcinoma cells resistant to rapamycin, antibody-mediated depletion of Foxp3+ cells reduced lung tumorigenesis by 80%. Likewise, mutant K-Ras transgenic mice lacking Foxp3+ cells developed 75% fewer lung tumors than littermates with Foxp3+ cells. CONCLUSIONS: Foxp3+ regulatory T cells are required for K-Ras-mediated lung tumorigenesis in mice. These studies support clinical testing of rapamycin or other agents that target Treg in K-Ras driven human lung cancer

    A phase I/II study of pemetrexed with sirolimus in advanced, previously treated non-small cell lung cancer

    Get PDF
    Background: Single-agent pemetrexed is a treatment for recurrent non-squamous non-small cell lung cancer (NSCLC) that provides limited benefit. Preclinical studies showed promising synergistic effects when the mammalian target of rapamycin (mTOR) inhibitor sirolimus was added to pemetrexed. Methods: This was a single-institution phase I/II study of pemetrexed in combination with sirolimus. The primary endpoint for the phase I was to determine the maximum tolerated dose (MTD) and safety of the combination. The primary endpoint for the phase II portion was to determine the overall response rate at the MTD. Key eligibility criteria included recurrent, metastatic NSCLC, ECOG performance status of 0–2, and adequate organ function. Sirolimus was administered orally daily after an initial loading dose, and pemetrexed was given intravenously on day 1 of every 21-day cycle. Results: Forty-two patients with recurrent, metastatic NSCLC were enrolled, 22 in phase I and 20 in phase II. The MTD was pemetrexed 500 mg/m2 every 3 weeks, and sirolimus 10 mg on day 1, and 3 mg daily thereafter. Treatment-related adverse events (AEs) occurred in 38 (90.5%) patients. The most common grade 3–4 treatment-related AEs were lymphopenia (31%) and hypophosphatemia (19%). Two treatment-related deaths occurred due to febrile neutropenia and infection, respectively. Among 27 total patients treated at the MTD, 6 (22.2%) had a partial response (PR), 12 (44.4%) had stable disease (SD) and 5 (18.5%) had progressive disease. Median progression-free survival (PFS) was 18.4 weeks (95% CI: 7.0–29.4). Conclusions: The combination of pemetrexed and sirolimus is active in heavily-pretreated NSCLC (ClinicalTrials.gov Identifier: NCT00923273)

    Multiple regions of Kaposi's sarcoma-associated herpesvirus ORF59 RNA are required for its expression mediated by viral ORF57 and cellular RBM15.

    No full text
    KSHV ORF57 (MTA) promotes RNA stability of ORF59, a viral DNA polymerase processivity factor. Here, we show that the integrity of both ORF59 RNA ends is necessary for ORF57-mediated ORF59 expression and deletion of both 5' and 3' regions, or one end region with a central region, of ORF59 RNA prevents ORF57-mediated translation of ORF59. The ORF59 sequence between nt 96633 and 96559 resembles other known MTA-responsive elements (MREs). ORF57 specifically binds to a stem-loop region from nt 96596-96572 of the MRE, which also binds cellular RBM15. Internal deletion of the MRE from ORF59 led to poor export, but accumulation of nuclear ORF59 RNA in the presence of ORF57 or RBM15. Despite of being translatable in the presence of ORF57, this deletion mutant exhibits translational defect in the presence of RBM15. Together, our results provide novel insight into the roles of ORF57 and RBM15 in ORF59 RNA accumulation and protein translation
    corecore