6,106 research outputs found

    Full-depth Coadds of the WISE and First-year NEOWISE-Reactivation Images

    Full text link
    The Near Earth Object Wide-field Infrared Survey Explorer (NEOWISE) Reactivation mission released data from its first full year of observations in 2015. This data set includes ~2.5 million exposures in each of W1 and W2, effectively doubling the amount of WISE imaging available at 3.4 and 4.6 microns relative to the AllWISE release. We have created the first ever full-sky set of coadds combining all publicly available W1 and W2 exposures from both the AllWISE and NEOWISE-Reactivation (NEOWISER) mission phases. We employ an adaptation of the unWISE image coaddition framework (Lang 2014), which preserves the native WISE angular resolution and is optimized for forced photometry. By incorporating two additional scans of the entire sky, we not only improve the W1/W2 depths, but also largely eliminate time-dependent artifacts such as off-axis scattered moonlight. We anticipate that our new coadds will have a broad range of applications, including target selection for upcoming spectroscopic cosmology surveys, identification of distant/massive galaxy clusters, and discovery of high-redshift quasars. In particular, our full-depth AllWISE+NEOWISER coadds will be an important input for the Dark Energy Spectroscopic Instrument (DESI) selection of luminous red galaxy and quasar targets. Our full-depth W1/W2 coadds are already in use within the DECam Legacy Survey (DECaLS) and Mayall z-band Legacy Survey (MzLS) reduction pipelines. Much more work still remains in order to fully leverage NEOWISER imaging for astrophysical applications beyond the solar system.Comment: coadds available at http://unwise.me, zoomable full-sky rendering at http://legacysurvey.org/viewe

    Unidirectional high gain brake stop

    Get PDF
    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed

    Self-stabilized Nonlinear Lateral Modes of Broad Area Lasers

    Get PDF
    The lateral modes of broad area lasers are investigated theoretically. The nonlinear interaction between optical field and effective refractive index leads to a saturable nonlinearity in the governing field equation, so that self-modulated solutions are found to be stable with increased current injection above saturation intensity. We derive approximate analytical solutions for traveling wave fields within the broad area laser. The field amplitude consists of a small ripple superimposed on a large dc value. Matching fields at the boundary determines the modulation depth and imparts an overall phase curvature to the traveling wave mode. There are multiple lateral modes for a given set of operating conditions, and modes with successively more lobes in the ripple have greater overall phase curvature. In contrast to the linear problem, several lateral modes can achieve the same modal gain, for a given injected current density, by saturating the gain to different extent. Thus, these modes would exhibit slightly different optical powers

    Geophysical Retrievals During OLYMPEX/RADEX Using the Advanced Microwave Precipitation Radiometer

    Get PDF
    The Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) took place Fall 2015 Spring 2016 in Washington, United States. The Advanced Microwave Precipitation Radiometer (AMPR) was flown on NASA ER-2 aircraft during science flights. This poster summarizes advancements in geophysical retrievals using AMPR data from OLYMPEX/RADEX. Calm ocean has low emissivity at microwave frequencies; wind creates foam increases emissivity. Liquid hydrometeors in atmosphere generally yield higher brightness temperature (T(sub b)) due to their higher reflectance. Effect of liquid hydrometeors depends highly on frequency resonance increases with increasing frequency, as does absorption (e.g., due to water vapor). Retrieve cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using multiple T(sub b)
    corecore