506 research outputs found

    Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Get PDF
    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole

    Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally) associated with control region duplication and/or major changes in ecology and anatomy.</p> <p>Results</p> <p>The near-complete mitochondrial (mt) genomes of three henophidian snakes were sequenced: <it>Anilius scytale</it>, <it>Rhinophis philippinus</it>, and <it>Charina trivirgata</it>. All three genomes share a duplicated control region and translocated tRNA<sup>LEU</sup>, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before <it>Anilius </it>diverged from other alethinophidians.</p> <p>Conclusions</p> <p>Mitochondrial gene sequence data alone may not be able to robustly resolve basal divergences among alethinophidian snakes. Taxon sampling plays an important role in identifying mitogenomic evolutionary events within snakes, and in testing hypotheses explaining their origin. Dramatic rate shifts in mitogenomic evolution occur within Scolecophidia as well as Alethinophidia, thus falsifying the hypothesis that these shifts in snakes are associated exclusively with evolution of a non-burrowing lifestyle, macrostomatan feeding ecology and/or duplication of the control region, both restricted to alethinophidians among living snakes.</p

    Characterising particulate random media from near-surface backscattering: A machine learning approach to predict particle size and concentration

    Get PDF
    To what extent can particulate random media be characterised using direct wave backscattering from a single receiver/source? Here, in a two-dimensional setting, we show using a machine learning approach that both the particle radius and concentration can be accurately measured when the boundary condition on the particles is of Dirichlet type. Although the methods we introduce could be applied to any particle type. In general backscattering is challenging to interpret for a wide range of particle concentrations, because multiple scattering cannot be ignored, except in the very dilute range. Across the concentration range from 1% to 20% we find that the mean backscattered wave field is sufficient to accurately determine the concentration of particles. However, to accurately determine the particle radius, the second moment, or average intensity, of the backscattering is necessary. We are also able to determine what is the ideal frequency range to measure a broad range of particles sizes. To get rigorous results with supervised machine learning requires a large, highly precise, dataset of backscattered waves from an infinite half-space filled with particles. We are able to create this dataset by introducing a numerical approach which accurately approximates the backscattering from an infinite half-space.EPSRC Grant EP/K033208/I and EP/R014604/

    A New Species of Skin-Feeding Caecilian and the First Report of Reproductive Mode in Microcaecilia (Amphibia: Gymnophiona: Siphonopidae)

    Get PDF
    A new species of siphonopid caecilian, Microcaecilia dermatophaga sp. nov., is described based on nine specimens from French Guiana. The new species is the first new caecilian to be described from French Guiana for more than 150 years. It differs from all other Microcaecilia in having fewer secondary annular grooves and/or in lacking a transverse groove on the dorsum of the first collar. Observations of oviparity and of extended parental care in M. dermatophaga are the first reproductive mode data for any species of the genus. Microcaecilia dermatophaga is the third species, and represents the third genus, for which there has been direct observation of young animals feeding on the skin of their attending mother. The species is named for this maternal dermatophagy, which is hypothesised to be characteristic of the Siphonopidae.Organismic and Evolutionary Biolog

    What Lies Beneath? Molecular Evolution During the Radiation of Caecilian Amphibians

    Get PDF
    Background: Evolution leaves an imprint in species through genetic change. At the molecular level, evolutionary changes can be explored by studying ratios of nucleotide substitutions. The interplay among molecular evolution, derived phenotypes, and ecological ranges can provide insights into adaptive radiations. Caecilians (order Gymnophiona), probably the least known of the major lineages of vertebrates, are limbless tropical amphibians, with adults of most species burrowing in soils (fossoriality). This enigmatic order of amphibians are very distinct phenotypically from other extant amphibians and likely from the ancestor of Lissamphibia, but little to nothing is known about the molecular changes underpinning their radiation. We hypothesised that colonization of various depths of tropical soils and of freshwater habitats presented new ecological opportunities to caecilians. Results: A total of 8540 candidate groups of orthologous genes from transcriptomic data of five species of caecilian amphibians and the genome of the frog Xenopus tropicalis were analysed in order to investigate the genetic machinery behind caecilian diversification. We found a total of 168 protein-coding genes with signatures of positive selection at different evolutionary times during the radiation of caecilians. The majority of these genes were related to functional elements of the cell membrane and extracellular matrix with expression in several different tissues. The first colonization of the tropical soils was connected to the largest number of protein-coding genes under positive selection in our analysis. From the results of our study, we highlighted molecular changes in genes involved in perception, reduction-oxidation processes, and aging that likely were involved in the adaptation to different soil strata. Conclusions: The genes inferred to have been under positive selection provide valuable insights into caecilian evolution, potentially underpin adaptations of caecilians to their extreme environments, and contribute to a better understanding of fossorial adaptations and molecular evolution in vertebrates

    Reflection from a multi-species material and its transmitted effective wavenumber.

    Get PDF
    We formally deduce closed-form expressions for the transmitted effective wavenumber of a material comprising multiple types of inclusions or particles (multi-species), dispersed in a uniform background medium. The expressions, derived here for the first time, are valid for moderate volume fractions and without restriction on the frequency. We show that the multi-species effective wavenumber is not a straightforward extension of expressions for a single species. Comparisons are drawn with state-of-the-art models in acoustics by presenting numerical results for a concrete and a water-oil emulsion in two dimensions. The limit of when one species is much smaller than the other is also discussed and we determine the background medium felt by the larger species in this limit. Surprisingly, we show that the answer is not the intuitive result predicted by self-consistent multiple scattering theories. The derivation presented here applies to the scalar wave equation with cylindrical or spherical inclusions, with any distribution of sizes, densities and wave speeds. The reflection coefficient associated with a halfspace of multi-species cylindrical inclusions is also formally derived

    Brewster-angle measurements of sea-surface reflectance using a high resolution spectroradiometer

    Get PDF
    This paper describes the design, construction and testing of a ship-borne spectroradiometer based on an imaging spectrograph and cooled CCD array with a wavelength range of 350-800 nm and 4 nm spectral sampling. The instrument had a minimum spectral acquisition time of 0.1 s, but in practice data were collected over periods of 10 s to allow averaging of wave effects. It was mounted on a ship's superstructure so that it viewed the sea surface from a height of several metres at the Brewster angle (53 degrees) through a linear polarizing filter. Comparison of sea-leaving spectra acquired with the polarizer oriented horizontally and vertically enabled estimation of the spectral composition of sky light reflected directly from the sea surface. A semi-empirical correction procedure was devised for retrieving water-leaving radiance spectra from these measurements while minimizing the influence of reflected sky light. Sea trials indicated that reflectance spectra obtained by this method were consistent with the results of radiance transfer modelling of case 2 waters with similar concentrations of chlorophyll and coloured dissolved organic matter. Surface reflectance signatures measured at three locations containing blooms of different phytoplankton species were easily discriminated and the instrument was sufficiently sensitive to detect solar-stimulated fluorescence from surface chlorophyll concentrations down to 1 mg m−3

    New digital braincase endocasts of two species of Desmatosuchus and neurocranial diversity within Aetosauria (Archosauria: Pseudosuchia)

    Get PDF
    In the present contribution we revise, figure, and redescribe several isolated braincases of the iconic aetosaur Desmatosuchus from the Placerias Quarry locality, Chinle Formation, Arizona, USA. The detailed study of the isolated braincases from the UCMP collection allowed us to assign them at the species-level and recognize two species of Desmatosuchus for the Placerias Quarry: D. spurensis and D. smalli. The former can be distinguished from the latter by the presence of a transverse sulcus on the parietals, deep median pharyngeal recess on the basisphenoid, almost no gap between the basal tubera and the basipterygoid processes, and the exoccipitals meeting at the midline. The presence of D. smalli at the Placerias Quarry has not been previously reported. Based on the braincases UCMP 27408, 27410, 27407, three new brain endocasts were developed through CT scan images, reconstructing the most complete endocranial casts known for an aetosaur, including the encephalon, cranial nerves, inner ear, and endocranial vasculature. The cranial endocasts also exhibited some differences between both species of Desmatosuchus, with D. spurensis having a distinguishable dural expansion and markedly asymmetric anterior and posterior semicircular canals of the labyrinth. Additionally, the combination of osteological features and the endocranial casts allowed us to identify and discuss the presence of an ossified orbitosphenoid on the anteriormost region of the braincase among aetosaurs. Furthermore, we were able to reinterpret some of the observations made by previous authors on the endocast of the holotype of Desmatosuchus spurensis (UMMP VP 7476) and provide some insight into their neurosensory capabilities.Fil: Von Baczko, Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Desojo, Julia Brenda. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gower, David J.. Natural History Museum; Reino UnidoFil: Ridgely, Ryan. Ohio University; Estados UnidosFil: Bona, Paula. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Witmer, Lawrence. Ohio University; Estados Unido
    corecore