82 research outputs found

    A Study in the Use of Elastic Materials in Expandable Containment Units

    Get PDF
    The rigidity of materials in conjunction with the aspect of elasticity has been a concern of modern technologies and construction in recent centuries because of the advantages that expandable storage would bring to the fields of containment units with respect to population growth and space exploration. The world population is currently growing at an exponential rate, and as our population grows, the more important it will become to have containment units that can both contain large volumes of material as well as minuscule amounts of material without wasting space. In order accomplish this, we will need a new type of storage container that utilizes the inherent strengths of both flexibility and rigidity to find a unique balance between the two. The purpose of this study is not to necessarily find the final answer to the question of expandable storage, but to narrow the range of questions that later research will use to finally answer the question, “How will we do it?” In order to research the utility of elastic material in creating storage devices in the same manner as has have described, this study would create an expandable backpack as a scaled-down case study. The backpack utilizes grooved panels made of lightweight, rigid material such as PVC-plastic in conjunction with elastic cloth, made of a mix of nylon and spandex, to create a container that will stand rigid on its own, but also expand in horizontal directions so that it can hold objects larger than its original volume. By creating male and female connectors in the individual panels, the container will be able to stand rigid, but also expand using elastic cloth sandwiched between the halves of each panel. The front and back of the container will be made of two panels, but the sides will be made up of 4 panels, so that expansion is more likely to occur in those directions, as well as lessen the stress on the fabric. In order to create the container, the team sampled multiple ratios of nylon-to-spandex, as well as tested the rigidity of different woods and plastics. Upon deciding on a material, PVC, a prototype was built and tested. The testing process involved filling the container to with varying amounts of weight, such as textbooks and laptops, and having a test subject walk around carrying the objects for varying amounts of time. The study also tested the amount of volume the backpack is able to expand, aiming for between five and ten percent increased volume. While the purpose of this study is not to solve the problem of expandable storage definitively, the concept of elastic cloth between interlocking panels has a high likelihood of being a step in the right direction

    Heat/mortality sensitivities in Los Angeles during winter: A unique phenomenon in the United States

    Get PDF
    Background: Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heat-related mortality during the winter for a U.S. city. Methods: Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we first relate daily human mortality to synoptic air mass type during the winter season (December, January, February) using Welch\u27s t-tests. However, this methodology is only somewhat effective at controlling for important inter- and intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales within the human mortality dataset. Results: Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles, particularly among those 65 years and older (p \u3c 0.001). The DLNM reveals the relative risk of human mortality increases when above average temperatures are present. Results are especially pronounced for maximum and mean temperatures, along with total mortality and those 65 +. Conclusions: The discovery of heat-related mortality in winter is a unique finding in the United States, and we recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on human health in the County

    Diabetic Csf1op/op Mice Lacking Macrophages Are Protected Against the Development of Delayed Gastric Emptying

    Get PDF
    Background & AimsDiabetic gastroparesis is associated with changes in interstitial cells of Cajal (ICC), neurons, and smooth muscle cells in both animal models and humans. Macrophages appear to be critical to the development of cellular damage that leads to delayed gastric emptying (GE), but the mechanisms involved are not well understood. Csf1op/op (Op/Op) mice lack biologically active Csf1 (macrophage colony stimulating factor), resulting in the absence of Csf1-dependent tissue macrophages. We used Csf1op/op mice to determine the role of macrophages in the development of delayed GE.MethodsAnimals were injected with streptozotocin to make them diabetic. GE was determined weekly. Immunohistochemistry was used to identify macrophages and ICC networks in the gastric muscular layers. Oxidative stress was measured by serum malondialdehyde (MDA) levels. Quantitative reverse-transcription polymerase chain reaction was used to measure levels of mRNA.ResultsCsf1op/op mice had normal ICC. With onset of diabetes both Csf1op/op and wild-type Csf1+/+ mice developed increased levels of oxidative stress (75.8 ± 9.1 and 41.2 ± 13.6 nmol/mL MDA, respectively). Wild-type Csf1+/+ mice developed delayed GE after the onset of diabetes (4 of 13) whereas no diabetic Csf1op/op mouse developed delayed GE (0 of 15, P = .035). The ICC were disrupted in diabetic wild-type Csf1+/+ mice with delayed GE but remained normal in diabetic Csf1op/op mice.ConclusionsCellular injury and development of delayed GE in diabetes requires the presence of muscle layer macrophages. Targeting macrophages may be an effective therapeutic option to prevent cellular damage and development of delayed GE in diabetes

    Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    Get PDF
    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications

    Myc stimulates B lymphocyte differentiation and amplifies calcium signaling

    Get PDF
    Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell–specific c-/N-myc double-knockout mice and Eμ-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2−/− and Btk−/− Tec−/−) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+–adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes

    Constellation Program (CxP) Crew Exploration Vehicle (CEV) Project Integrated Landing System

    Get PDF
    Crew Exploration Vehicle (CEV) Chief Engineer requested a risk comparison of the Integrated Landing System design developed by NASA and the design developed by Contractor- referred to as the LM 604 baseline. Based on the results of this risk comparison, the CEV Chief engineer requested that the NESC evaluate identified risks and develop strategies for their reduction or mitigation. The assessment progressed in two phases. A brief Phase I analysis was performed by the Water versus Land-Landing Team to compare the CEV Integrated Landing System proposed by the Contractor against the NASA TS-LRS001 baseline with respect to risk. A phase II effort examined the areas of critical importance to the overall landing risk, evaluating risk to the crew and to the CEV Crew Module (CM) during a nominal land-landing. The findings of the assessment are contained in this report

    The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation

    Get PDF
    Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study explores the impacts of these biases on multimodel uncertainty in Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble projections of 21st century change in Antarctic surface temperature, net precipitation, and SIA. The analysis is based on time slice climatologies in the Representative Concentration Pathway 8.5 future scenario (2070–2099) and historical (1970–1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature, and SIA are found to be strongly associated with simulated historical mean SIA (e.g., cross-model correlations of r = 0.77, 0.71, and −0.85, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed SIA. These strong emergent relationships on SIA bias could, if found to be physically robust, be exploited to give more precise climate projections for Antarctica

    Bioactive Endophytes Warrant Intensified Exploration and Conservation

    Get PDF
    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15–30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance
    corecore