172 research outputs found

    What Do We Know About Corporate Headquarters? A Review, Integration, and Research Agenda

    Get PDF
    During the past five decades, scholars have studied the corporate headquarters (CHQ) – the multidivisional firm’s central organizational unit. The purpose of this article is to review the diverse and fragmented literature on the CHQ and to identify the variables of interest, the dominant relationships, and the contributions. We integrate, for the first time, the existing knowledge of the CHQ into an organizing framework. Based on a synthesis of the literature, we identify major shortcomings and gaps, and present an agenda for future research that contributes to our understanding of the CHQ and the multidivisional firm

    Non-oxidative modification of low density lipoprotein by ruptured myocytes

    Get PDF
    AbstractIn this study, the interaction of ruptured cardiac myocytes with low density lipoprotein (LDL) has been investigated and the consequent extent of uptake by macrophages. The results show that lysate released from ruptured myocytes is capable of inducing LDL oxidation and that the resulting modified form is recognised and degraded by macrophages. Peroxyl radical scavengers inhibit the LDL oxidation but not the macrophage uptake suggesting that LDL can be modified by mechanisms that are independent of oxidative processes by intracellular constituents of cardiac myocytes

    Poliovirus RNA Polymerase Mutation 3D-M394T Results in a Temperature-Sensitive Defect in RNA Synthesis

    Get PDF
    AbstractMutant ts10 is an RNA-negative temperature-sensitive mutant of Mahoney type 1 poliovirus. Mutant ts10 3Dpolwas purified from infected cells and was shown to be rapidly heat-inactivated at 45° when compared to wild-type polymerase. Sequencing of mutant ts10 genomic RNA revealed a U to C transition at nt 7167 resulting in an amino acid change of methionine 394 of 3Dpolto threonine. The 3D-M394T mutation was engineered into a wild-type infectious clone of poliovirus type 1. The resultant mutant virus, 3D-105, had a temperature-sensitive phenotype in plaque assays. The translation and replication of wild-type, ts10, and 3D-105 virion RNAs were all characterized in HeLa S10 translation-RNA replication reactionsin vitro.The optimum temperatures for the replication of the wild-type and mutant viral RNAs in the HeLa S10 translation-replication reactions were 37 and 34°, respectively. To characterize the temperature-sensitive defect in the replication of the mutant RNA, we used preinitiation RNA replication complexes which were formed in HeLa S10in vitroreactions containing guanidine HCl. Negative-strand RNA synthesis in 3D-M394T mutant preinitiation replication complexes was normal at 34° but was rapidly and irreversibly inhibited at 39.5°. To differentiate between the initiation and elongation steps in RNA replication, we compared the elongation rates in mutant and wild-type replication complexes at 39.5°. The results showed that the elongation rates for nascent negative strands in both the mutant and wild-type replication complexes were identical. Therefore, the results indicate that the heat-sensitive step in negative-strand synthesis exhibited by the 3D-M394T replication complexes is in the initiation of RNA synthesis and not in the elongation of nascent chains

    In vitro comparison of the effects of rough and polished stem surface finish on pressure generation in cemented hip arthroplasty

    Get PDF
    Background and purpose High pressures around implants can cause bone lysis and loosening. We investigated how pressures are generated around cemented femoral stems

    Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    Get PDF
    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel

    Anion stabilised hypercloso-hexaalane Al6H6

    Get PDF
    The authors gratefully acknowledge financial support from the Australian Research Council (C.J. and A.S.), the U.S. Air Force Asian Office of Aerospace Research and Development (grant FA2386-18-1-0125 to C.J.), Deutsche Forschungsgemeinschaft (FR 641/25-2) (G.F.), and Director, Bragg Institute, ANSTO, 2011 approval of DB 1959 (A.J.E. and C.J.).Boron hydride clusters are an extremely diverse compound class, which are of enormous importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of these species have remained staunchly elusive to synthetic chemists. Here we report that reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)Mg]2[Al6H6(Fiso)2] (ArNacnac = [HC(MeCNAr)2]-, Ar = C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl; Fiso = [HC(NDip)2]-, Dip = C6H3Pri2-2,6), which crystallographic and computational studies show to possess near neutral, octahedral hypercloso-hexaalane, Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is compared to that in the classical borane, [B6H6]2-. Thus, the chemistry of classical polyhedral boranes is extended to stable aluminium hydride clusters for the first time.Publisher PDFPeer reviewe

    In vitro influence of stem surface finish and mantle conformity on pressure generation in cemented hip arthroplasty

    Get PDF
    Background and purpose Under physiological loads, debonded cemented femoral stems have been shown to move within their cement mantle and generate a fluid pump that may facilitate peri-prosthetic osteolysis by pressurizing fluid and circulating wear debris. The long-term physiological loading of rough and polished tapered stems in vitro has shown differences in performance, with greater interface pressures generated by the rough stems. In this study we investigated the individual effects of stem surface finish, degree of mantle wear, and mode of loading on the stem pump mechanism

    Combined inhibition of the Fanconi anaemia (FA) pathway and ATR promotes R-loop generation and profound radiosensitisation in glioblastoma

    Get PDF
    Glioblastoma is a deadly cancer in which treatment resistance is mediated through extensive intratumoural heterogeneity including difficult-to-treat glioblastoma stem cell (GSC) subpopulations. GSC eradication represents an attractive therapeutic goal, but these cells possess upregulated DNA damage response (DDR) processes, resulting in a chemo- and radioresistant phenotype. However, recent studies have demonstrated that elevated replication stress in GSCs may partially explain DDR upregulation and resistance, thus highlighting a potential therapeutically exploitable vulnerability. ATR and the FA-pathway are both fundamental to cellular DNA replication stress responses and maintaining replication fork stability. Since we have previously shown the FA-pathway is inactive in normal brain, but is re-activated in glioblastoma with potential to provide a cancer-specific foundation for combination DDR therapies, we explored the therapeutic potential of simultaneous inhibition of the FA-pathway (FAPi) and ATR (ATRi), in addition to other FA-pathway-based DDR inhibitor (DDRi) combinations. We find that compared with single agent treatments, combined inhibition of the FA-pathway and ATR in both 2D and 3D GSC ex vivo models promotes a substantial increase in conflicts between DNA replication and transcription (R-loops) which is further exacerbated by ionising radiation (IR). Molecular analyses of DNA damage indicate that FAPi+ATRi increases peak DNA damage post-IR treatments, with sustained elevation of DNA damage even at 24 hours post-treatment. In conclusion, simultaneously targeting the FA-pathway and ATR represents an appealing therapeutic strategy for glioblastoma. This approach promotes substantial R-loop generation, likely through exacerbating constitutively high levels of DNA replication stress previously observed in GSCs, with deleterious effects in these treatment resistant cells. Our findings underline the value of developing clinical FA pathway inhibitors and also support the application of current ATR inhibitors to molecularly-selected subsets of glioblastoma, namely, those with defects in one of 22 currently known FA-pathway genes which include BRCA1/FANCS and BRCA2/FANCD1
    • …
    corecore