174 research outputs found

    Guided Tissue Remineralization of Resin-Bonded Acid-Etched Dentin

    Get PDF
    Contemporary biomineralization strategies incorporate non-classical crystallization pathways of fluidic amorphous nanoprecursors and mesoscopic transformation. Using two functional biomimetic molecules, we previously regenerated mineralized dentin from acid-etched dentin using the Guided Tissue Remineralization (GTR) approach, with definitive intrafibrillar remineralization of type-I collagen. Degradation of denuded collagen within dentin adhesive resin-infiltrated dentin is a pertinent problem in dentin bonding. Here, we show that GTR provides a means of salvaging these degrading bonds by remineralizing resin-dentin interfaces. The GTR medium consists of a Portland cement/simulated body fluid that includes polyacrylic acid and polyvinylphosphonic acid biomimetic analogs for amorphous calcium phosphate dimension regulation and collagen targeting. Both interfibrillar and intrafibrillar apatites became readily discernible within the adhesive-bonded dentin after 2-4 months. Amorphous nanoprecursors created by GTR also penetrated the adhesive resin matrix to create nanocomposites. We anticipate GTR to be the starting point for more sophisticated strategies in extending the longevity of resin-dentin bonds

    Dentin: A Dynamic Substrate - A Review

    Get PDF
    The structure of dentin is unusual in that the number and size of its tubules changes as one moves from the periphery toward the pulp chamber. Near the pulp, the tubules are very close together and the water con tent of this deep dentin is high. Near the enamel, the tubules are far apart, occupying less than 1% of the surface area. When enamel or dentin is cut, the surface becomes covered by an adherent layer of cutting debris called the smear layer. Its composition presumably reflects the composition of the underlying dentin. It is only about 1 μm thick but its presence modifies the function of the dentin a great deal. It lowers dentin permeability and therefore can be regarded as protective. However, it masks the underlying dentin and hence interferes with attempts to bond dental materials directly to dentin. If it is removed, the dentin becomes much more permeable and fluid shifts across the open tubules can cause sensitivity in vivo. As smear layers are very acid-labile, they often dissolve in oral fluids. Several attempts have been made to replace smear layers with acid resistant structures that accomplish the same function. Smear layer structure is being studied by using both scanning electron microscopy as well as electronic particle sizing equipment. The close adaptation of dental materials to smear layers and to underlying dentin is currently an area of very active research. Removal of smear layers increases adaptation and bonding strength but may increase the incidence of pulpal inflammation if the bonding is not uniform or permanent. The dynamics of dentin are just beginning to be understood

    Capacidade de união de resinas adesivas à dentina afetada e infectada por cárie

    Get PDF
    Hybridized dentin permits dental treatments that were previously impossible with conventional techniques, opening new frontiers in modern adhesive dentistry. We have investigated the adhesive property of current bonding systems to caries-infected dentin by a microtensile bond strength test (µTBS) and transmission electron microscopy (TEM), and suggested that bonding resin could infiltrate into caries-infected dentin partially to embed carious bacteria within hybrid layers. We have named this concept of caries control as modified sealed restoration (MSR). On the other hand, Kuraray Medical Inc. (Tokyo, Japan) has developed an antibacterial adhesive system (ABF, now marketed in USA as Protect Bond). So as to evaluate the effectiveness of ABF on root caries control, we have examine the microtensile bond strengths (µTBS) of ABF to normal versus carious root dentin and the interfacial morphology by a scanning electron microscopy (SEM). ABF could form the hybrid-like structures by infiltrating into the surfaces of the root carious dentin, and the mean value of µTBS of ABF to root carious dentin was 23.0 MPa. These results suggested that MSR combined with ABF might be an advantageous minimal invasive therapy for root caries.As técnicas adesivas permitiram inovações nos tratamentos restauradores da atualidade. Este estudo investigou a qualidade de união de diferentes sistemas adesivos ao substrato dentinário afetado e infectado por cárie, através de testes de microtração e microscopia eletrônica de transmissão e varredura (MET). Os resultados sugerem que a resina adesiva pôde infiltrar na dentina infectada e envolver as bactérias na camada híbrida. Esse conceito de controle da cárie foi denominado de "Restauração-Selante Modificada" (RSM). Por outro lado, a empresa Kuraray Med. Inc .(Japão) desenvolveu um sistema adesivo com propriedades anti-bacterianas (ABF), o qual é comercializado nos EUA como Protect Bond. Para avaliar a efetividade do sistema ABF sobre cáries radiculares, empregou-se testes de resistência adesiva e análise por microscopia eletrônica. O sistema ABF foi capaz de formar uma estrutura interfacial semelhante à camada híbrida, através da infiltração na superfície da dentina cariada radicular e os valores de resistência de união foram em média de 23 MPa. Os achados sugerem que a combinação da técnica RSM com o sistema ABF parece ser uma alternativa para o emprego da terapia de mínima invasão em cáries radiculares

    Hydration interactions: aqueous solvent effects in electric double layers

    Full text link
    A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The short-range interaction is accounted for by adding a quadratic non-local term to the Poisson-Boltzmann free energy. The model is used to study solvent effects in a planar electric double layer. The counter-ion density is found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the plate is dominated only by counter-ions. Further away from the plate the density distribution can be described using a Poisson-Boltzmann theory with an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev. E. Corrected typos and reference

    Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro

    Get PDF
    Tricalcium silicate cements have been successfully employed in the biomedical field as bioactive bone and dentin substitutes, with widely acclaimed osteoactive properties. This research analyzed the effects of different tricalcium silicate cement formulations on the temporal osteoactivity profile of human bone marrow-derived mesenchymal stem cells (hMW-MSCs). These cells were exposed to four commercially available tricalcium silicate cement formulations in osteogenic differentiation medium. After 1, 3, 7 and 10 days, quantitative real-time polymerase chain reaction and Western blotting were performed to detect expression of the target osteogenic markers ALP, RUNX2, OSX, OPN, MSX2 and OCN. After 3, 7, 14 and 21 days, alkaline phosphatase assay was performed to detect changes in intracellular enzyme level. An Alizarin Red S assay was performed after 28 days to detect extracellular matrix mineralization. In the presence of tricalcium silicate cements, target osteogenic markers were downregulated at the mRNA and protein levels at all time points. Intracellular alkaline phosphatase enzyme levels and extracellular mineralization of the experimental groups were not significantly different from the untreated control. Quantitative polymerase chain reaction results showed increases in downregulation of RUNX2, OSX, MSX2 and OCN with increasing time of exposure to the tricalcium silicate cements, while ALP showed peak downregulation at day 7. For Western blotting, OSX, OPN, MSX2 and OCN showed increased downregulation with increased exposure time to the tested cements. Alkaline phosphatase enzyme levels generally declined after day 7. Based on these results, it is concluded that tricalcium silicate cements do not induce osteogenic differentiation of hBM-MSCs in vitro

    Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities and Self-Repair Potential

    Get PDF
    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix

    Biochemical and immunohistochemical identification of MMP-7 in human dentin

    Get PDF
    Objectives: Matrix metalloproteinases (MMPs) are dentinal endogenous enzymes claimed to have a vital role in dentin organic matrix breakdown. The aim of the study was to investigate presence, localization and distribution of MMP-7 in sound human dentin. Methods: Dentin was powdered, demineralized and dissolved in isoelectric focusing buffer. Resolved proteins were transferred to nitrocellulose membranes for western blotting (WB) analyses. For the zymographic analysis, aliquots of dentin protein were electrophoresed in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing fluorescently labeled gelatin. Further, the concentrations of dentinal MMPs were measured using Fluorescent Microsphere Immunoassay with a human MMP-MAP multiplex kit. Pre- and post-embedding immunolabeling technique was used to investigate the localization and distribution of MMP-7 in dentin. Dentin was cryo-fractured, the fragments partially decalcified and labeled with a primary monoclonal anti-MMP-7 and a secondary antibody conjugated with gold nanoparticles. MMP-7 labelings were identified in the demineralized dentin matrix as highly electron-dense dispersed gold particles. Results: WB and zymographic analysis of extracted dentin proteins showed presence of MMP-7 (similar to 20-28 KDa). Further, MMP-7 was found in the supernatants of the incubated dentin beams using Fluorescent Microsphere Immunoassay. FEI-SEM and TEM analyses established MMP-7 as an intrinsic constituent of the human dentin organic matrix. Conclusion: This study demonstrated that MMP-7 is an endogenous component of the human dentin fibrillar network. Clinical significance: It is pivotal to understand the underlying processes behind dentin matrix remodeling and degradation in order to develop the most optimal clinical protocols and ensure the longevity of dental restorations.Peer reviewe

    Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    Get PDF
    Background: Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. Results: Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. Conclusion: These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics
    corecore