449 research outputs found
A transfer principle and applications to eigenvalue estimates for graphs
In this paper, we prove a variant of the Burger-Brooks transfer principle
which, combined with recent eigenvalue bounds for surfaces, allows to obtain
upper bounds on the eigenvalues of graphs as a function of their genus. More
precisely, we show the existence of a universal constants such that the
-th eigenvalue of the normalized Laplacian of a graph
of (geometric) genus on vertices satisfies where denotes the maximum valence of
vertices of the graph. This result is tight up to a change in the value of the
constant , and improves recent results of Kelner, Lee, Price and Teng on
bounded genus graphs.
To show that the transfer theorem might be of independent interest, we relate
eigenvalues of the Laplacian on a metric graph to the eigenvalues of its simple
graph models, and discuss an application to the mesh partitioning problem,
extending pioneering results of Miller-Teng-Thurston-Vavasis and Spielman-Tang
to arbitrary meshes.Comment: Major revision, 16 page
Approximating the Spectrum of a Graph
The spectrum of a network or graph with adjacency matrix ,
consists of the eigenvalues of the normalized Laplacian . This set of eigenvalues encapsulates many aspects of the structure
of the graph, including the extent to which the graph posses community
structures at multiple scales. We study the problem of approximating the
spectrum , of in the regime where the graph is too
large to explicitly calculate the spectrum. We present a sublinear time
algorithm that, given the ability to query a random node in the graph and
select a random neighbor of a given node, computes a succinct representation of
an approximation , such that . Our algorithm has query complexity and running time ,
independent of the size of the graph, . We demonstrate the practical
viability of our algorithm on 15 different real-world graphs from the Stanford
Large Network Dataset Collection, including social networks, academic
collaboration graphs, and road networks. For the smallest of these graphs, we
are able to validate the accuracy of our algorithm by explicitly calculating
the true spectrum; for the larger graphs, such a calculation is computationally
prohibitive.
In addition we study the implications of our algorithm to property testing in
the bounded degree graph model
Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations
This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP) for integer modulo 2 coefficients, where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation
Regular triangulations as lexicographic optimal chains
We introduce a total order on n-simplices in the n-Euclidean space for which the support of the lexicographic-minimal chain with the convex hull boundary as boundary constraint is precisely the n-dimensional Delaunay triangulation, or in a more general setting, the regular triangulation of a set of weighted points. This new characterization of regular and Delaunay triangulations is motivated by its possible generalization to submanifold triangulations as well as the recent development of polynomial-time triangulation algorithms taking advantage of this order
Lexicographic optimal homologous chains and applications to point cloud triangulations
This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP), where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a strongly connected pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation
- …