Lexicographic optimal homologous chains and applications to point cloud triangulations

Abstract

This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP), where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a strongly connected pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation

    Similar works