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Abstract
We introduce a total order on n-simplices in the n-Euclidean space for which the support

of the lexicographic-minimal chain with the convex hull boundary as boundary constraint is
precisely the n-dimensional Delaunay triangulation, or in a more general setting, the regular
triangulation of a set of weighted points. This new characterization of regular and Delaunay
triangulations is motivated by its possible generalization to submanifold triangulations as well
as the recent development of polynomial-time triangulation algorithms taking advantage of
this order.

1 Introduction
Algorithms computing the Delaunay triangulation and its variants [2] can be described as a set
of combinatorial operations, evaluating geometric predicates and acting on algebraic quantities
such as coordinates or equations. However, the Delaunay triangulation, or more generally regular
triangulations, also have a variational formulation, introduced in [6] and further studied in [1, 5],
characterizing them as solutions of a linear programming problem on triangulations. We show
that this formulation can in fact be extended to the space of simplicial chains (Proposition 4.3).

The main part of this work consists in proving this variational formulation can be transposed
in terms of lexicographic minimum (Theorem 3.1), for which polynomial time algorithms have
recently been devised [8]. The proof of the theorem may be of interest in itself by offering an
unusual point of view on regular triangulations.

One motivation for this work is that the same lexicographic order may be applied to the
meshing of submanifold of Euclidean space. To be usable in this context, a such order must be
isometry invariant, so that it can be evaluated from edge lengths only. It has been shown indeed
that minimum chains in their homology class, for this lexicographic order, provide triangulations
of well sampled (with respect to the reach) smooth 2-submanifolds of Euclidean n-space [7], akin to
the tangential Delaunay complex [4]. In practice, this order enables efficient algorithms providing
minimal solutions that inherit the optimality properties of 2-dimensional Delaunay triangulations
and create pertinent and convincing meshes for surface reconstruction, in particular in the case of
noisy point clouds with non uniform densities and outliers [8].

2 Conventions and notations
A k-simplex σ being a set of k + 1 vertices in ambient space Rn, we allow ourselves to use set
theoretic operators on simplices. For example, τ ⊂ σ means that τ is a face of σ and σ1 ∪ σ2 is
the join of σ1 and σ2. |σ| denotes the underlying space of the simplex σ, i.e. the convex hull of
its vertices which, thanks to the generic condition 3.1, are affinely independent.

Homology coefficients are implicitly in Z2 = Z/2Z, i.e. integers modulo 2 so that 1 = −1.
The vector space of k-chains over K is denoted Ck (K) in place of Ck(K,Z2). In this context we
can allow ourselves to see chains as sets of simplices. For example, for Γ ∈ Ck (K) and σ is a

1



k-simplex in K, we write interchangeably σ ∈ Γ and Γ(σ) = 1. Similarly, for Γ1,Γ2 ∈ Ck (K), we
use interchangeably vector and set theoretic operators: Γ1 + Γ2 = Γ1−Γ2 = (Γ1 ∪Γ2) \ (Γ1 ∩Γ2).

For a chain Γ in Ck (K), we denote by |Γ| the support of Γ, which is the sub-complex of K
made of all k-simplices in Γ together with all their faces.

A total order ≤ on k-simplices induces a lexicographic order on k-chains with coefficients in
Z2 as follows:

Definition 2.1 (Lexicographic Order on chains). Assume there is a total order ≤ on the set of
k-simplices of K, defining the max on sets of k-simplices. For Γ1,Γ2 ∈ Ck (K):

Γ1 vlex Γ2 ⇐⇒
def.


Γ1 = Γ2

or
max {σ ∈ Γ1 + Γ2} ∈ Γ2

3 Main result
We consider a set P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn × R of weighted points in n-dimensional
Euclidean space. A weighted point (P, 0) is seen as a usual point P ∈ Rn, while, when µ > 0, it is
associated to the sphere centered at P with radius r = √µ. The convex hull CH(P) denotes the
convex hull in Rnof the set of points: CH(P) = CH ({P1, . . . , PN}).

The n-dimensional full complex over P, denoted KP, is the simplicial complex made of all
possible simplices up to dimension n with vertices in P. The aim of this paper is to prove the
following:

Theorem 3.1. Let P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn×R, with N ≥ n+1 be in general position
and let KP be the n-dimensional full complex over P. Denote by βP ∈ Cn−1(KP) the (n−1)-chain
made of simplices belonging to the boundary of CH(P). If

Γmin = min
vlex
{Γ ∈ Cn(KP), ∂Γ = βP}

the simplicial complex |Γmin| support of Γmin is the regular triangulation of P.

When all the weights are zero (∀i, µi = 0), the regular triangulation (Definition 4.1) is the
Delaunay triangulation.

The relation vlex among n-chains is the lexicographic order defined according to Definition
2.1, where the total order on n-simplices is given at the end of Section 3.3. The general position
assumption is a generic condition formalized in Condition 3.2.

Obviously, replacing in Theorem 3.1 the full complex KP by a complex containing the regular
triangulation would again give this triangulation as a minimum.

3.1 Outline of the proof.
The main argument of the proof is given in Section 6.

Statement of Proposition 4.3 is the same as Theorem 3.1 except for the order along which the
minimum is taken. In Proposition 4.3, the minimization is meant for the preorder (which is in
fact generically an order) vp, induced by a weighted L1 norm ‖ · ‖(p) on chains. All the proof
consists then in showing that, while the two orders differ, they share the same minimum under the
theorem constraints. The bounding weight of a simplex is a generalization, for weighted points, of
the radius of the smallest ball enclosing the simplex. It is the dominant quantity in the definition
of the order on simplices which induces the lexicographic order vlex on chains. The proof then
proceeds in 3 main steps:

1) For p large enough, the weight wp(σ)p of any single simplex σ in the ‖ · ‖(p) norm is larger
than the sum of all weights of all simplices with smaller bounding weight than σ (Lemma 4.5 in
Section 4.1). This fact allows to focus on the link of a single simplex, the one with the largest
bounding weight µ6=B defined in (30), for which some simplices in the minimum of vlex and vp
would differ as explained in Section 6.
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2) We introduce (Sections 4.2 and 4.3) an extension of the classical lifted paraboloid con-
struction that allows to see the simplicial structure of the link of a simplex τ in the Delaunay
triangulation as a convex cone. In this representation, we study the subcomplex of this link cor-
responding to cofaces of τ with same bounding weight as τ . We show that this subcomplex is
isomorphic to a set of bounded and visible faces of a convex polytope. It is therefore a simplicial
ball (Lemma 4.13 in Section 4.3).

3) By induction on the dimension of convex cones and convex polytopes, one shows that this
bounded subcomplex of the boundary of a convex polytope visible from the origin can be expressed
as a the minimum under boundary constraint (Lemma 5.4 in Section 5) for another lexicographic
order.

This second lexicographic order corresponds, on the restriction of the link of τ to simplices
with the same bounding weight, to the first lexicographic order on corresponding full dimensional
simplices in the star of τ (Lemmas 6.1 and 6.2 in Section 6).

3.2 Weighted points and weighted distances
We follow the terminology, notations and conventions from Section 4.4 of [3].

Definition 3.2 (Section 4.4 in [3]). Given two weighted points (P1, µ1), (P2, µ2) ∈ Rn × R their
weighted distance is defined as:

D ((P1, µ1), (P2, µ2)) =
def.

(P1 − P2)2 − µ1 − µ2

We say (P1, µ1) and (P2, µ2) are orthogonal if D ((P1, µ1), (P2, µ2)) = 0.

We introduce a first generic condition:

Condition 3.1. We say that P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn × R satisfies the first generic
condition if no (n+ 1) points {Pi1 , . . . , Pin+1} lie on a same (n− 1)-dimensional affine space.

We now define the generalization of the circumsphere and the smallest enclosing ball for sets
of weighted points.

Definition 3.3. Assume that P satisfies Condition 3.1. Given a k-simplex σ ⊂ P with 0 ≤ k ≤ n,
the generalized circumsphere and smallest enclosing ball of σ are the weighted points (PC , µC)(σ)
and (PB , µB)(σ) respectively defined as:

µC (σ) =
def.

min {µ ∈ R,∃P ∈ Rn,∀(Pi, µi) ∈ σ, D ((P, µ), (Pi, µi)) = 0} (1)

µB (σ) =
def.

min {µ ∈ R,∃P ∈ Rn,∀(Pi, µi) ∈ σ, D ((P, µ), (Pi, µi)) ≤ 0} (2)

PC(σ) and PB(σ) are respectively the unique points P that realize the minimum in Equations (1)
and (2). The weights µC (σ) and µB (σ) are called respectively circumweight and bounding weight
of σ.When ∀i, µi = 0, they correspond respectively to the square of the circumradius and the square
of the radius of the smallest ball enclosing σ.

The set {(P, µ),∀(Pi, µi) ∈ σ,D ((P, µ), (Pi, µi)) = 0}, on which the first arg min is taken, is
not empty, thanks to the generic condition 3.1.

Lemma 3.4 (Proof in Appendix B). For any k-simplex σ ∈ KP, one has PB(σ) ∈ |σ|.

Condition 3.2. We say that P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn × R is in general position if it
satisfies the first generic condition 3.1 and if, for a k-simplex σ and a k′-simplex σ′ in KP with
2 ≤ k, k′ ≤ n, one has:

µC(σ) = µC(σ′)⇒ σ = σ′ (3)

From now on, we assume P to be in general position i.e. it satisfies Condition 3.2.

Lemma 3.5 (Proof in Appendix C). Under generic condition 3.2 on P, for any simplex σ,
there exists a unique inclusion minimal face Θ(σ) of σ such that (PB , µB)(σ) = (PC , µC)(Θ(σ)).
Moreover one has (PC , µC)(Θ(σ)) = (PB , µB)(Θ(σ)).

Figure 1 illustrates the possibilities for Θ(σ) in the case n = 3 and zero weights.
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Figure 1: Illustration of the definition of Θ(σ) for a tetrahedron σ = abcd in the case of zero
weights.

3.3 Regular triangulation order on simplices
For a n-simplex σ, we define a (k + dim(Θ(σ)))-dimensional face Θk(σ) as follows. For k = 0,
Θ0(σ) = Θ(σ), where Θ(σ) is defined in Lemma 3.5.

For k > 0, Θk(σ) is the (dim(Θk−1(σ)) + 1)-dimensional coface of Θk−1(σ) with minimal
circumradius:

Θk(σ) = arg min
Θk−1(σ)⊂τ⊂σ

dim(τ)=dim(Θk−1(σ))+1

µC(τ) (4)

and µk(σ) is the circumweight of Θk(σ): µk(σ) = µC(Θk(σ)). In particular, µ0(σ) = µC(Θ(σ)) =
µB(σ) (by Lemma 3.5) and if k = dim(σ)− dim(Θ(σ)) then µk(σ) = µC(σ).

Observe that, thanks to generic condition 3.2 and Lemma 3.5, one has, for two n-simplices
σ1, σ2: µB(σ1) = µB(σ2)⇒ Θ(σ1) = Θ(σ2) and therefore, if µB(σ1) = µB(σ2), µk(σ1) and µk(σ2)
are defined for the same range of values of k.

We define the following order relation on n-simplices (recall that µ0(σ) = µB(σ)):

σ1 ≤ σ2 ⇐⇒
def.

σ1 = σ2 or


µ0(σ1) < µ0(σ2)

or
∃k ≥ 1, µk(σ1) > µk(σ2)
and ∀j, 0 ≤ j < k, µj(σ1) = µj(σ2)

(5)

One can check that when P is in general position, the relation ≤ is a total order.
For example, when n = 2 and the weights are zero, this order on triangles consists in first

comparing the radii of the smallest circles enclosing the triangles Ti, i = 1, 2, whose squares are
RB(Ti)2 = µB(Ti) = µ0(Ti). This is generically enough for acute triangles, but not for obtuse
triangles that could generically share their longest edge. In this case the tie is broken by comparing
in reverse order the circumradii, whose squares are RC(Ti)2 = µC(Ti) = µ1(Ti).

Following Definition 2.1 the order ≤ on n-simplices induces a lexicographic order vlex on the
n-chains of KP.
Observation 3.6. From the definition of the order on simplices, the lexicographic minimum is
invariant under a global translation of the weights by a common shift s: ∀i, µi ← µi + s. (as
explicitly explained in observation 7.1 in Appendix A). The same holds for regular triangulations.
Therefore proving Theorem 3.1 for non positive weights is enough to extend it to any weights.
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4 Regular triangulations of weighted points
We recall now the definition of a regular triangulation over a set of weighted points. Regular
triangulation can alternatively be defined as the dual of the Laguerre (or power) diagram of a
set of weighted points. We use here a generalization of the empty sphere property of Delaunay
triangulations.

Definition 4.1 (Lemma 4.5 in [3]). A regular triangulation T of the set of weighted points P =
{(P1, µ1), . . . , (PN , µN )} ⊂ Rn×R, N ≥ n+1, is a triangulation of the convex hull of {P1, . . . , PN}
taking its vertices in {P1, . . . , PN} such that for any simplex σ ∈ T , if (PC(σ), µC(σ)) is the
generalized circumsphere of σ, then:

(Pi, µi) ∈ P \ σ ⇒ D ((PC(σ), µC(σ)), (Pi, µi)) > 0

4.1 Lift of weighted points and p-norms
Given a weighted point (P, µ) ∈ Rn×R, its lift with respect to an implicit origin O ∈ Rn, denoted
by lift(P, µ), is a point in Rn × R given by:

lift(P, µ) =
def.

((P −O), (P −O)2 − µ)

Similarly to Delaunay triangulations, it is a well known fact that simplices of the regular triangu-
lation of P are in one-to-one correspondence with the lower convex hull of lift(P):

Proposition 4.2. A simplex σ is in the regular triangulation of P if and only if lift(σ) is a
simplex on the lower convex hull of lift(P).

Based on this lifted paraboloid formulation, the idea of variational formulation for Delaunay
triangulations has emerged [6]. This idea has been exploited further in order to optimize trian-
gulations in [5, 1]. We follow here the same idea but the variational formulation, while using the
same criterion, is applied on the linear space of chains, which can be seen as a superset of the
space of triangulations.

We define a function on the convex hull of a k-simplex fσ : |σ| → R where σ = {(P0, µ0), . . . , (Pk, µk)}
as the difference between the linear interpolation of the height of the lifted vertices and the func-
tion x → (x − O)2. More precisely, for a point x ∈ |σ| with barycentric coordinates λi ≥ 0,∑
i λi = 1, we have x =

∑
i λiPi and:

fσ : x 7→ fσ(x) =
def.

(∑
i

λi((Pi −O)2 − µi)
)
− (x−O)2 (6)

A short computation shows that the function fσ, expressed in terms of barycentric coordinates,
is invariant by isometry (translation, rotation or symmetry on σ). In particular fσ(x) does not
depend on the origin O of the lift.

It follows from Proposition 4.2 that, if σreg is a simplex containing x in the regular triangulation
of P, for any other simplex σ containing x with vertices in P:

fσreg (x) ≤ fσ(x) (7)

In the particular case where all weights are non positive, that is ∀i, µi ≤ 0, the convexity of
x 7→ x2 says that the expression of fσ(x) in (6) is never negative and in this case (7) implies that
defining the weight wp of a n-simplex σ as:

wp(σ) =
def.
‖fσ‖p =

(∫
|σ|
fσ(x)pdx

) 1
p

(8)

allows to characterize the regular triangulation as the one induced by the chain Γreg that, among
all chains with boundary βP, minimizes:

Γ→ ‖Γ‖(p) =
def.

∑
σ

|Γ(σ)|wp(σ)p (9)
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In this last equation, the notation |Γ(σ)| instead of Γ(σ) is there since Γ(σ) ∈ Z2 and the sum is
in R: Γ(σ)→ |Γ(σ)| convert coefficients in Z2 into binary real numbers in {0, 1}.

Formally, we have the following Proposition 4.3 that characterizes regular triangulations as a
linear programming problem over Z2.

Proposition 4.3 (Proof in Appendix D). Let P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn × R, with
N ≥ n+ 1 be in general position with non positive weights, and let KP be the n-dimensional full
complex over P. Denote by βP ∈ Cn−1(KP) the (n− 1)-chain made of simplices belonging to the
boundary of CH(P). For any p ∈ [1,∞), if:

Γreg = arg min
Γ∈Cn(KP)
∂Γ=βP

‖Γ‖(p)

then the simplicial complex |Γreg| support of Γreg is the regular triangulation of P.

Lemma 4.4 (Proof in Appendix E). One has:

sup
x∈|σ|

fσ(x) = µB(σ) (10)

The following is an immediate consequence used in the proof of Lemma 4.5:

lim
p→∞

wp(σ) = w∞(σ) = ‖fσ‖∞ = sup
x∈|σ|

fσ(x) = µB(σ) (11)

Lemma 4.5 (Proof in Appendix F). Let P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rn×R, with N ≥ n+1,
be in general position with non positive weights. Let KP be the corresponding n-dimensional full
complex. For p large enough, the weight wp(σ)p of any n-simplex σ ∈ KP, is larger than the sum
of all n-simplices in KP with smaller bounding weight µB. In other words, if K [n]

P is the set of
n-simplices in KP:

∃p?,∀p ≥ p?, ∀σ ∈ K [n]
P , wp(σ)p >

∑
τ∈K[n]

P ,µB(τ)<µB(σ)

wp(τ)p

As explained in the proof of the main theorem of Section 6, Lemma 4.5 allows us to focus on the
link of a single simplex τ . However, before that, we need to introduce geometrical constructions
that give an explicit representation of this link (Sections 4.2 and 4.3).

4.2 Projection on the bisector of a simplex
We denote by bisτ the (n− k)-dimensional affine space bisector of τ , formally defined as:

bisτ =
def.
{x ∈ Rn,∀v1, v2 ∈ τ,D ((x, 0), v1) = D ((x, 0), v2)} (12)

In the particular case where dim(τ) = 0, one has bisτ = Rn.
Let x 7→ πbisτ (x) and x 7→ d(x,bisτ ) = d(x, πbisτ (x)) denote respectively the orthogonal

projection on and the minimal distance to bisτ . We define a projection πτ : P → bisτ × R as
follows:

πτ (P, µ) =
def.

(
πbisτ (P ), µ− d(P,bisτ )2) (13)

Figure 2 illustrates πτ for ambient dimension 3 and dim(τ) = 1.
Let oτ = PC(τ) ∈ bisτ denote the (generalized) circumcenter of τ . If (Pi, µi) ∈ τ , then

D ((oτ , µC(τ)), (Pi, µi)) = 0.
Since oτ = πbisτ (Pi) we have (Pi−oτ )2−µi−µC(τ) = d(P,bisτ )2−µi−µC(τ) = 0. It follows

that if we denote µ(πτ (Pi, µi)) the weight of πτ (Pi, µi), one has µ(πτ (Pi, µi)) = µi−d(P,bisτ )2 =
−µC(τ). Therefore, πτ sends all vertices of τ to a single weighted point:

(Pi, µi) ∈ τ ⇒ πτ (Pi, µi) = (oτ ,−µC(τ)) (14)
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Figure 2: Illustration for the definition of bisτ , πτ (top left and right) and Φτ (bottom).
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Lemma 4.6 (Proof in Appendix G). Let P be in general position, τ ∈ KP a k-simplex and
σ ∈ KP a coface of τ . Then σ is in the regular triangulation of P if and only if πτ (σ) is a coface
of the vertex {(oτ ,−µC(τ))} = πτ (τ) in the regular triangulation of πτ (P).

An immediate consequence of Lemma 4.6 is:

Corollary 4.7. The projection πτ preserves the structure of the regular triangulation around τ ,
more precisely:

1. the simplex τ is in the regular triangulation of P if and only if the vertex πτ (τ) = {(oτ ,−µC(τ))}
is a vertex of the regular triangulation of πτ (P),

2. if τ is in the regular triangulation of P, πτ induces a simplicial isomorphism between the link
of τ in the regular triangulation of P and the link of vertex πτ (τ) in the regular triangulation
of πτ (P).

4.3 Polytope and shadow associated to a link in a regular triangulation
In this section, we study the link of a k-simplex τ in the regular triangulation of P that satisfies:

(PB , µB)(τ) = (PC , µC)(τ) (15)

We know from Proposition 4.2 that the link of τ in the regular triangulation is isomorphic to the
link of lift(πτ (τ)) on the boundary of the lower convex hull of lift(πτ (P)). We consider the lift
with the origin at oτ , in other words, the image of a vertex (P, µ) ∈ P is:

Φτ (P, µ) =
def.

lift (πτ (P, µ))

=
(
πbisτ (P )− oτ , (πbisτ (P )− oτ )2 − µ+ d(P,bisτ )2)

Observe that:
Φτ (τ) = {(0, µC(τ)}

Call Pτ the set of weighted points in (Pi, µi) ∈ P such that τ ∪ (Pi, µi) has same bounding weight
as τ . In the case of the Delaunay triangulation, Pτ corresponds to the set of points in P inside
the smallest ball enclosing τ . Formally, using the assumption (15):

Pτ =
def.
{(Pi, µi) ∈ P \ τ, D ((PC(τ), µC(τ)), (Pi, µi)) < 0} (16)

Denote byKτ the (n−k−1)-dimensional simplicial complex made of all up to dimension (n−k−1)
simplices over vertices in Pτ . Observe that:

D ((PC(τ), µC(τ)), (Pi, µi)) < 0
⇐⇒ (πbisτ (Pi)− oτ )2 − µi + d (Pi,bisτ )2

< µC(τ) (17)

Denote by Height(lift((P, µ)) the height of the lift of a point (P, µ), defined as the last coordinate
of the lift, so that:

Height(Φτ (P, µ)) = (πbisτ (P )− oτ )2 − µ+ d(P,bisτ )2 (18)

Since under our generic conditions we have πbisτ (P )− oτ 6= 0, (16), (17) and (18) imply that
∃v ∈ Pτ ⇒ Height(Φτ (v, µ)) > 0 and (17) can be rephrased as:

Observation 4.8. A vertex belongs to Pτ if and only if the height of its image by Φτ is strictly
less than µC(τ) > 0:

v ∈ Pτ ⇐⇒ 0 < Height(Φτ (v)) < µC(τ)

This observation allows to define the following conical projection:
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Figure 3: Illustration of the shadow polytope (grey area) of Definition 4.11 corresponding to the
example of Figure 2.

Definition 4.9 (Shadow). Let v be a vertex in Pτ . The shadow Shτ (v) of v is a point in the
(n − k)-dimensional Euclidean space bisτ defined as the intersection of the half-line starting at
(0, µC(τ)) and going through Φτ (v) with the space bisτ .

Shτ (P, µ) =
def.

µC(τ)
µC(τ)−Height(Φτ (P, µ)) (πbisτ (P )− oτ )

The shadow of a simplex σ ∈ Kτ is a simplex in bisτ whose vertices are the shadows of vertices
of σ.

Let Γreg be the n-chain containing the n-simplices of the regular triangulation of P and |Γreg|
the corresponding simplicial complex. Denote by X(τ) ∈ Cn−k−1(Kτ ) the (n−k−1)-chain made
of simplices σ ∈ Kτ such that τ ∪ σ ∈ |Γreg|:

X(τ) =
def.
{σ ∈ Kτ , dim(σ) = n− k − 1, τ ∪ σ ∈ Γreg} (19)

In the following, we call polytope a finite intersection of closed half spaces ∩iHi. The convex
cone of a polytope at a point p is the intersection of all such Hi whose boundary contain p.

Definition 4.10 (Polytope facet visible from the point 0). We say that a facet f of a polytope
is visible from the point 0, or visible for short, if the closed half-space H containing the polytope
and whose boundary is the supporting plane of f does not contains 0.

Definition 4.11 (Shadow Polytope). The (possibly empty) intersection of the convex cone of the
lower convex hull of Φτ (P) at Φτ (τ) = (0, µC(τ)) with bisτ is called shadow polytope of τ .

Figure 3 depicts the shadow polytope corresponding to the example of Figure 2 as the hatched
area and the bounded cells of its boundary by the two edges in blue.

For each upper half-space Hj contributing to the convex cone of the lower convex hull of Φτ (P)
at (0, µC(τ)), the intersection Hj ∩ bisτ is a (n− k)-dimensional half-space in bisτ . The shadow
polytope is precisely defined as the intersection of all such half-spaces Hj ∩ bisτ . Since each Hj

is a upper half-space and since by observation 4.8 one has µC(τ) > 0, Hj does not contains (0, 0),
which implies that Hj ∩ bisτ does not contain the point oτ in bisτ . It follows that:

Observation 4.12. All facets of the shadow polytope are visible from 0.

Lemma 4.13 (Proof in Appendix H). Let P be in general position with non positive weights.

1. τ is in the regular triangulation of P if and only if Φτ (τ) = (0, µC(τ)) is an extremal point
of the convex hull of Φτ (P).

9



2. When τ is in the regular triangulation of P, its link is isomorphic to the link of the vertex
Φτ (τ) = (0, µC(τ)) in the simplicial complex corresponding to the boundary of the lower
convex hull of Φτ (P).

3. When τ is in the regular triangulation of P, Shτ induces a bijection between the simplices
in X(τ) and the set of bounded facets of the boundary of the shadow polytope.

5 Convex cone as lexicographic minimal chain
This section is self-contained and does not relies on previous constructions. Lemma 5.4 is a key
ingredient of the proof of Theorem 3.1 but is also a result of independent interest: visible convex
hulls can be defined as minimal lexicographic chains. Lemmas 5.2 and 5.3 (Proof in Appendix I
and J) will be instrumental in the proof of Lemma 5.4.

Definition 5.1 (Trace of a chain in a link). Given a k-simplex τ in a simplical complex K and a
n-chain on K for n > k, we call trace of Γ on the link of τ the (n− k − 1)-chain Trτ (Γ) defined
in the link of τ by:

Trτ (Γ)(σ) =
def.

Γ(τ ∪ σ)

Lemma 5.2 (Proof in Appendix I). Given a k-simplex τ in a simplical complex K and a n-chain
Γ on K for n > k, one has:

∂ Trτ (Γ) = Trτ (∂Γ)

Lemma 5.3 (Proof in Appendix J). Let C ⊂ Rn be a polytope and O ∈ Rn \ C. Let X ⊂ ∂C be
a compact set union of facets of C visible from O. If x ∈ X maximizes the distance to O, then x
is in the closure of ∂C \X.

We need to define another order on simplices together with its induced order on chains, respec-
tively denoted ≤Sh and vSh. We associate to a (n− 1)-simplex σ in Rn that does not contain 0 a
dimension increasing sequence of faces ∅ = τ−1(σ) ⊂ τ0(σ) ⊂ . . . ⊂ τn−1(σ) = σ with dim(τi) = i.
Under a simple generic condition, it is defined as follows.

τ−1(σ) = ∅ and τ0(σ) is the vertex of σ farthest from 0. More generally, define the distance
from a flat (an affine space) F to 0 as d0(F ) = infp∈F d(p, 0). If ζ is a non degenerate i-simplex
for i ≥ 0, defines d0(ζ) = d0(F (ζ)) where F (ζ) is the i-dimensional flat support of ζ. For i ≥ 0,
τi(σ) is the coface of dimension i of τi−1(σ) whose supporting i-flat is farthest from 0:

τi(σ) =
def.

arg max
ζ⊃τi−1(σ)
dim(ζ)=i

d0(ζ) (20)

For i = 0, . . . , n−1 we set δi(σ) = d0(τi(σ)) and the comparison <Sh between two (n−1)-simplices
σ1 and σ2 is a lexicographic order on the sequences (δi(σ1))i=0,...n−1 and (δi(σ2))i=0,...n−1:

σ1 <Sh σ2 ⇐⇒
def.

{
∃k ≥ 0, δk(σ1) < δk(σ2)
and ∀j, 0 ≤ j < k, δj(σ1) = δj(σ2)

(21)

which defines an order relation:

σ1 ≤Sh σ2 ⇐⇒
def.

σ1 = σ2 or σ1 <Sh σ2 (22)

Condition 5.1. Let K be a (n − 1)-dimensional simplicial complex. For any pair of simplices
σ1, σ2 ∈ K: dim(σ1) = dim(σ2) = k and d0(σ1) = d0(σ2)⇒ σ1 = σ2.

Under Condition 5.1, ≤Sh is a total order on simplices and, following Definition 2.1, the order
≤Sh on simplices induces a lexicographic order vSh on k-chains of K.

Lemma 5.4. Let P be a set of points in Rn such that 0 ∈ Rn is not in the convex hull of P .
Let K be the complete (n− 1)-dimensional simplicial complex over P , i.e. the simplicial complex
made of all (n − 1)-simplices whose vertices are points in P with all their faces. Assume that K
satisfies the generic condition 5.1.
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P

X

Figure 4: Illustration of Lemma 5.4 for n = 1.

Figure 5: Illustration of the recursion in the proof of Lemma 5.4 for n = 2.

Let X be a (n− 1)-chain in K whose (n− 1)-simplices are on the boundary of the convex hull
of P and are all visible from 0 ∈ Rn. Then:

X = min
vSh
{Γ ∈ Cn−1(K), ∂Γ = ∂X} (23)

where when n = 1 the boundary operator in (23) is meant as the boundary operator of reduced
homology, i.e the linear operator ∂̃0 : Cn−1(K)→ Z2 that counts the parity.

The lemma is illustrated for n = 2, 3 on figures 5 and 6.

Proof. We first claim that the lemma holds for n = 1. In this case the fact that 0 is not in
the convex hull of P means that the 1-dimensional points in P are either all positive, either all
negative. The single simplex in the convex hull boundary visible from 0 is the point in P closest
to 0, i.e. the one with the smallest absolute value, which corresponds to the minimum chain with
odd parity in the vSh order, which proves the claim.

We assume then the theorem to be true for the dimension n − 1 and proceed by induction.
This recursion is illustrated on figure 5 for n = 2 and figure 6 for n = 3.

Consider the minimum:

Γmin = min
vSh
{Γ ∈ Cn−1(K), ∂Γ = ∂X} (24)

We need to prove that Γmin = X.
Let v be the (unique) vertex in the simplices of ∂X which is farthest from 0. Since v is a vertex

in at least one simplex in ∂X = ∂Γmin, it must be a vertex in some simplex in Γmin.
Thanks to Lemma 5.3, if a point x is a local maximum in X of the distance to 0 one has

x ∈ ∂X. It follows that v is also the vertex in the simplices of X which is farthest from 0.
Since v is the vertex in X farthest from 0 and since by definition Γmin vSh X, we know that

Γmin does not contain any vertex farther from the origin than v, therefore v is also the vertex in
the simplices of Γmin farthest from 0.

Since ∂Γmin = ∂X, Lemma 5.2 implies that:

∂ Trv(Γmin) = Trv(∂Γmin) = Trv(∂X) (25)

In order to define a lexicographic order on chains on the link of v in K, we consider the
hyperplane Π containing 0 and orthogonal to the line 0v. We associate to any (n − 2)-simplex
η ∈ LkK(v) the (n−2) simplex πvΠ(η) conical projection of η on Π with center v. In other words,
if u is a vertex of η:

{πvΠ(u)} = Π ∩ uv

11



Figure 6: Illustration of the recursion in the proof of Lemma 5.4 for n = 3.

where uv denote the line going through u and v. The map πvΠ is a conical projection on vertices
but it extends to a bijection on simplices and an isomorphism on chains that trivially commutes
with the boundary operator.

By definition of the lexicographic order vSh, the comparison of two chains whose farthest
vertex is v starts by comparing their restrictions to the star of v. Therefore, since v is the farthest
vertex in Γmin, the restriction of Γmin to the star of v must be minimum under the constraint
∂Γ = ∂X. The constraint ∂Γ = ∂X for the restriction of Γmin to the star of v is equivalent to the
constraint given by equation (25) or equivalently by:

∂πvΠ (Trv(Γmin)) = πvΠ (Trv(∂X))

and the minimization on the restriction of the (n− 1)-chain Γmin to the star of v can equivalently
be expressed as the minimization of the (n−2)-chain γmin = πvΠ (Trv(Γmin)) under the constraint
∂γmin = πvΠ (Trv(∂X)), we have then:

γmin = πvΠ (Trv (Γmin))

= πvΠ

(
Trv

(
min
vSh
{Γ ∈ Cn−1(K), ∂Γ = ∂X}

))
(26)

= min
vSh
{γ ∈ Cn−2 (πvΠ (LkK(v))) , ∂γ = πvΠ (Trv(∂X))}

= min
vSh
{γ ∈ Cn−2 (πvΠ (LkK(v))) , ∂γ = ∂πvΠ (Trv(X))}

In the third equality of (26) we have used the fact that the orders on (n− 1)-simplices in the
star of v in K and the order on corresponding (n− 2)-simplices in the image by πvΠ of the link of
v are compatible.

Indeed, if F is a k-flat in Rn going through v, we have (see Figure 7):

d0(πvΠ(F )) = d0(F ∩Π) = d0(F )‖v − 0‖√
(v − 0)2 − d0(F )2

(27)

with the convention d0(πvΠ(F )) = +∞ in the non generic case where F ∩Π = ∅ (the denominator
vanishes in this case while since v ∈ F one has F ∩Π 6= ∅⇒ d0(F ) < ‖v − 0‖).

As seen on (27) d0(F ) 7→ d0(πvΠ(F )) is an increasing function and the orders are therefore
consistent along the induction.

12



Figure 7: Illustration for Equation (27).

We claim that the minimization problem in the last member of (26) satisfies the condition of
the theorem for n′ = n− 1 which is assumed true by induction.

The recursion is as follows: hyperplane Π corresponds to Rn′ with n′ = n− 1 and:

• n′ ← n− 1

• P ′ ← πvΠ(P \ {v})

• K ′ ← πvΠ(LkK(v))

• X ′ ← πvΠ (Trv(X))

Since (n − 1)-simplices in X are in convex positions, hyperplanes supporting these simplices, in
particular the simplices in the star of v, separate all points of P from 0. It follows that the
intersection of theses hyperplanes with the horizontal hyperplane, i.e. the images by πvΠ of
the hyperplanes, separates P ′ = πvΠ(P \ {v}) from 0. It follows that the (n′ − 1)-simplices in
X ′ = πvΠ (Trv(X)) are in convex position and are visible from 0.

Therefore one can apply our lemma recursively, which gives us, using (26):

γmin = πvΠ (Trv (Γmin)) = πvΠ (Trv(X))

It follows that the faces in the star of v corresponding to Trv (Γmin) belong to X. Call Y the
(n− 1)-chain made of these simplices in the star of v. We have both Y ⊂ X and Y ⊂ Γmin. Since
v is the vertex farthest from 0 in both X and in Γmin one has by definition of the lexicographic
order:

Γmin = min
vlex
{Γ ∈ Cn−1(K), ∂Γ = ∂X}

= Y + min
vlex
{Γ ∈ Cn−1(K), ∂Γ = ∂(X − Y )}

So, by considering the new problem X ← (X − Y ) and iterating as long as X is not empty, we
get our final result Γmin = X.

6 Proof of Theorem 3.1
The next two lemmas establish the connexion between the orders vlex and vSh.
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Lemma 6.1 (Proof in Appendix K). For σ1, σ2 ∈ Kτ , one has:

µC(τ ∪ σ1) ≥ µC(τ ∪ σ2) ⇐⇒ d0(Shτ (σ1)) ≤ d0(Shτ (σ2)) (28)

For a n-chain Γ denote by ↓ρ Γ the chain obtained by removing from Γ all simplices with
bounding weight strictly greater than ρ.

↓ρ Γ =
def.
{σ ∈ Γ, µB(σ) ≤ ρ} (29)

Lemma 6.2 (Proof in Appendix L). For two n-chains Γ1,Γ2 ∈ Cn(KP) if Γ1 6= Γ2 one has:

↓ρ Γ1 vlex ↓ρ Γ2

⇒ Shτρ
(
Trτρ (↓ρ Γ1)

)
vSh Shτρ

(
Trτρ (↓ρ Γ2)

)
Proof of Theorem 3.1. We prove Theorem 3.1 in the case of non positive weights which then
extends to any weights thanks to Observations 3.6 and 7.1. As in Proposition 4.3, denote by
Γreg the chain that defines the regular triangulation of CH(P). As in Theorem 3.1 denote by
βP ∈ Cn−1(KP) the (n− 1)-chain made of simplices belonging to the boundary of CH(P).

According to Proposition 4.3, Γreg minimizes Γ 7→ ‖Γ‖(p) among the chains with boundary βP
for any p ≥ 1. In particular, Γreg minimizes Γ 7→ ‖Γ‖p? for the value p? of Lemma 4.5.

Proposition 4.3 and Theorem 3.1 consider a minimum with respect to the same boundary
condition while their objective differ. In order to prove Theorem 3.1, we have to show that
both minimum still agree. By contradiction, we assume now that they differ, which means that,
Γmin 6= Γreg where Γmin is the minimal chain of Theorem 3.1. Consider µ6=B to be the largest
bounding weight for which some simplex in Γmin and Γreg differ:

µ6=B =
def.

max{µB(σ), σ ∈ Γmin + Γreg} (30)

There must be at least one simplex with bounding weight µ6=B in Γreg as otherwise, by definition
of µ6=B , there would be a simplex with radius µ6=B in Γmin and this would give Γreg vlex Γmin with
Γreg 6= Γmin and since ∂Γreg = ∂Γmin = βP this contradicts the definition of Γmin.

Similarly, it follows from Lemma 4.5 that if there was no simplex with bounding weight µ6=B
in Γmin, one would have ‖Γmin‖p? < ‖Γreg‖p? and ∂Γreg = ∂Γmin: a contradiction with the
minimality of Γreg for norm ‖ · ‖p? (Proposition 4.3). We have shown that if they differ, both Γreg
and Γmin must contain at least one simplex with bounding weight µ6=B .

We know from Lemma 3.5 and the generic condition 3.2 that the set of simplices with bounding
weight µ6=B are all cofaces of some unique dimension minimal simplex τµ6=

B
. If dim(τµ6=

B
) = n, τµ6=

B

is the unique simplex in KP whose bounding weight is µ6=B . But then Γreg and Γmin coincide on
simplices with bounding weight µ6=B , a contradiction with the definition of µ6=B .

Assume now that dim(τµ6=
B

) = k < n. By definition of µ6=B one has:

↓µ6=
B

Γreg− ↓µ6=
B

Γmin = Γreg − Γmin (31)

where ↓µ6=
B
is defined in (29). In order to spare our eyes, we allow ourselves to replace for the rest

of the section ↓µ6=
B
by ↓ and τµ6=

B
by τ . It follows from (31) that:

∂ (↓ Γreg− ↓ Γmin) = ∂Γreg − ∂Γmin = βP − βP = 0

↓ Γreg and ↓ Γmin have therefore the same boundary and by Lemma 5.2, their trace also have the
same boundary:

∂ Trτ (↓ Γmin) = ∂ Trτ (↓ Γreg) (32)
Observe that Trτ (↓ Γreg) coincide with the definition of X(τ) in (19). We know then from

Lemma 4.13 that the shadows of simplices in X(τ) = Trτ (↓ Γreg), that is Shτ (X(τ)) = Shτ (Trτ (↓ Γreg))
is a chain in Shτ (Kτ ) made of the faces of the convex hull of Shτ (Pτ ) visible from the origin 0.
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In the remaining of this proof we use the lexicographic order vSh on shadows of (n− k − 1)-
chains in Kτ , defined at the beginning of Section 5. This order is equivalent to the order vlex on
corresponding n-chains restricted to the set of simplices with bounding weight µ6=B (Lemmas 6.1
and 6.2). This correspondence allows to conclude the proof by applying Lemma 5.4 that says the
chain defined by visible faces of a polytope minimises the lexicographic order vSh among chains
with same boundary. More formally, thanks to Lemma 6.2 we have:

↓ Γ1 vlex↓ Γ2 ⇒ Shτ (Trτ (↓ Γ1)) vSh Shτ (Trτ (↓ Γ2))

It follows that Shτ (Trτ (↓ Γmin)) is, among all chains in the complex Shτ (Kτ ), the one that
minimises vSh under the constraint (32), or equivalently:

∂ Shτ (Trτ (↓ Γmin)) = ∂ Shτ (Trτ (↓ Γreg))

Lemma 5.4 applied with:

n ← n− k
X ← Shτ (Trτ (↓ Γreg)) = Shτ (X(τ))
P ← Shτ (Pτ )
K ← Shτ (Kτ )

implies:
Shτ (Trτ (↓ Γmin)) = Shτ (Trτ (↓ Γreg))

In other words, Γmin and Γreg coincide on simplices with bounding weight µ6=B , a contradiction
with the definition of µ6=B .
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7 Appendices
A Invariance by global weight translation
Observation 7.1. Let ψλ : Rn × R→ Rn × R, be the transformation that shifts the weight by λ:

ψλ(P, µ) = (P, µ+ λ)

Let σ ∈ KP be a simplex, from definitions 3.3 and 3.2 we have:

PC(ψλ(σ)) = PC(σ) and µC(ψλ(σ)) = µC(σ)− λ
PB(ψλ(σ)) = PB(σ) and µB(ψλ(σ)) = µB(σ)− λ

It follows that a global shift by a constant value λ results in an opposite shift on the weights of
generalized circumcenters. It therefore preserves the relative order between simplices weights µC
and µB:

µC(σ1) ≤ µC(σ2) ⇐⇒ µC(ψλ(σ1)) ≤ µC(ψλ(σ2))

and the same relation holds for µB. Since the order ≤ between simplices (5) defined in section
3.3 relies entirely on comparisons on µC and µB, this total order is preserved by a global weight
translation.

B Proof of Lemma 3.4
Proof. If σ = {(P0, µ0), . . . , (Pk, µk)}, |σ| is the convex hull of {P0, . . . , Pk}. If P /∈ |σ| the
projection of P on |σ| decreases the weighted distance from P to all the vertices of σ, which shows
that (P, µ) cannot realize the arg min in (2).

C Proof of Lemma 3.5
Figure 1 illustrates the possibilities for Θ(σ) in the case n = 3 and zero weights.

Proof. In (2), denote by τ ⊂ σ the set of vertex (Pi, µi) ∈ σ for which:

D ((P, µ), (Pi, µi)) = 0

This set cannot be empty as, if all inequalities in (2) where strict, a strictly smaller value of µ
would still match the inequality, which would contradict with the arg min in (2). One has then
τ 6= ∅ and:

∀(Pi, µi) ∈ τ,D ((P, µ), (Pi, µi)) = 0 (33)

and of course:
∀(Pi, µi) ∈ τ,D ((P, µ), (Pi, µi)) ≤ 0 (34)

No other (P, µ) with a smaller value of µ can satisfies (33) nor (34) as it would again similarly
contradict the arg min in (2). It follows that:

(PB , µB)(σ) = (PB , µB)(τ) = (PC , µC)(τ)

D Proof of Proposition 4.3
Proof. Note that Γreg is unique under the assumed general position.

Since, in the regular triangulation, all (n−1)-simplices that are not on the boundary of CH(P)
are shared by exactly two n-simplices, while only those in βP have a single n-coface, we have:

∂Γreg = βP
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We claim now that :
∂Γ = βP ⇒ ‖Γreg‖(p) ≤ ‖Γ‖(p) (35)

Indeed, (8) and (9) gives:

‖Γ‖p(p) =
∑
σ∈Γ

∫
|σ|
δσ(x)pdx =

∫
CH(P)

∑
σ∈Γ
|σ|3x

δσ(x)pdx

We get:
‖Γ‖p(p) =

∫
CH(P)\|Kn−1

P |

∑
σ∈Γ
|σ|3x

δσ(x)pdx (36)

From the equivalence between regular triangulations and convex hull on lifted points we know
that if σreg ∈ Γreg, then for any n-simplex in σ ∈ K :

x ∈ |σ| ∩ |σreg| ⇒ δσreg (x) ≤ δσ(x) (37)

According to Lemma 7.2, in (36), there is an odd number of, and therefore at least one, simplex
σ ∈ Γ satisfying |σ| 3 x in the condition on the sum. Therefore (37) gives:

x ∈ |σreg| ⇒ δσreg (x)p ≤
∑
σ∈Γ
|σ|3x

δσ(x)p (38)

And, since, from definition of triangulation, for x ∈ CH(P) \ |Kn−1
P | there is exactly one simplex

σreg such that |σreg| 3 x , (38) can be rewritten as:∑
σ∈Γreg
|σ|3x

δσ(x)p ≤
∑
σ∈Γ
|σ|3x

δσ(x)p (39)

which, together with (36) gives the claim (35).
Now, if some n-simplex σ ∈ Γ with |σ| 3 x, for some x ∈ CH(P) \ |Kn−1

P |, is not Delaunay,
then ∑

σ∈Γreg
|σ|3x

δσ(x)p = δσreg (x)p <
∑
|σ|3x

δσ(x)p

and since the function is continuous, this implies ‖Γ‖(p) > ‖Γreg‖(p).

Lemma 7.2. Given P = {P1, . . . , PN} ⊂ Rn, with N ≥ n + 1, in general position, denote by
βP ∈ Cn−1(KP) the (n− 1)-chain made of simplices belonging to the boundary of CH(P).
Let Γ ∈ Cn(KP) be such that:

∂Γ = βP

If x ∈ CH(P) \ |Kn−1
P | then there is an odd number of n-simplices σ ∈ Γ such that x ∈ |σ|.

Proof. We claim that since x ∈ CH(P) \ |Kn−1
P | there is x? ∈ Rn \ CH(P) such that:

[x? x] ∩ |Kn−2
P | = ∅ (40)

where [x? x] denote the line segment in Rn between x? and x.
Indeed, we consider moving a point xt from x0 to some x1, picking x0, x1 far away enough to

have [x0 x1]∩CH(P) = ∅ and in such a way that [x0 x1] belongs to none of the affine hyper-planes
spanned by (n − 1)-simplices in KP), which occurs generically. Then, the negation of condition
(40) with x? = xt, occurs only as isolated values of t. We can pick a value t? for which is does
not occur: set x? = xt? and the claim is proved. | Next, we navigate a point y(t) = (1− t)x? + tx
along segment [x? x]. This segment intersect transversally the (n − 1)-faces |τ |, for τ ∈ KP. At
each intersection point we can keep track of the change in the number of covering n-simplices,
where, by covering simplices we name the n-simplices σ ∈ Γ such that x ∈ |σ|.

We know that this number is zero at x? since x? /∈ CH(P). Since CH(P) ∩ [x? x] is convex
there is a single intersection point y(tb) between [x? x] ans the boundary of CH(P).
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This point y(tb) ∈ (x?, x) hits a (n − 1)-simplex τb ∈ |βP|, face of the convex hull boundary.
Since ∂Γ = βP, we know that τb is shared by an odd number nb of n-simplices in |Γ|. By definition
of the convex hull, and since P is in general position, for each n-simplex σ coface of τb, |σ| is on
the inner side of the convex hull supporting half plane. It follows that the number of covering
simplices become the odd number nb just after the first crossing.

Then when crossing any other (n − 1)-simplex τi /∈ |βP|, at some point y(ti), the condition
∂Γ = βP requires the number ni of n-simplices in |Γ| coface of τi to be even. When crossing |τi|,
along [x? x], point y(ti) exits k−, and enters k+ n-simplices in |Γ|, with k−+k+ = ni. The current
number of covering n-simplices value is incremented by k+ − k−. Since ni is even and:

k+ − k− = k+ + k− − 2k− = ni − 2k−

k+ − k− is even and the number of covering simplices remains odd all along the path [x? x].

E Proof of Lemma 4.4
Proof. Since the expression (6) does not depend on the origin O, let us choose this origin to be
O = PB(σ). With barycentric coordinates based on the vertices Pi, i = 0, k of σ, i.e. λi ≥ 0,∑
i λi = 1 such that x =

∑
i λiPi, the expression of fσ is:

fσ(x) =
(∑

i

λi
(
(Pi − PB(σ))2 − µi

))
− (x− PB(σ))2

one has (Pi−PB(σ))2−µi−µB(σ) = D ((PB(σ), µB(σ)), (Pi, µi)) ≤ 0 so that (Pi−PB(σ))2−µi ≤
µB(σ) and it follows that:

∀x, fσ(x) ≤ µB(σ)− (x− PB(σ))2 (41)

We have from Lemma 3.4 that PB(σ) ∈ |Θ(σ)| ⊂ |σ| so that, in the expression of PB(σ) as a
barycenter of vertices of σ, only coefficients λi corresponding to vertices of Θ(σ) ⊂ σ are non zero:

PB(σ) =
∑

(Pi,µi)∈Θ(σ)

λiPi

One has by definition of (PC , µC):

(Pi, µi) ∈ Θ(σ)⇒ (Pi − PC(Θ(σ)))2 − µi = µC(Θ(σ))

and since we know from Lemma 3.5 that:

(PB , µB)(σ) = (PB , µB)(Θ(σ)) = (PC , µC)(Θ(σ))

one gets:
(Pi, µi) ∈ Θ(σ)⇒ (Pi − PB(σ))2 − µi = µB(σ)

and:

fσ(PB(σ)) =

 ∑
(Pi,µi)∈Θ(σ)

λi((Pi − PB(σ))2 − µi)

− 02 = µB(σ)

This with (41) ends the proof.

F Proof of Lemma 4.5
Proof. Consider the smallest ratio between two bounding of n-simplices in KP:

ι = inf
σ1,σ2∈K

[n]
P

µB(σ1)<µB(σ2)

µB(σ2)
µB(σ1)
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From the finiteness of simplices, one has ι > 1 and since for a finite number of n-simplices σ ∈ K [n]
P

we have from (11):
lim
p→∞

wp(σ) = µB(σ)

It follows that there is some p0 large enough such that for any p > p0 one has:

∀σ1, σ2 ∈ K [n]
P , µB(σ1) < µB(σ2)⇒ µB(σ2)

µB(σ1) >
1 + ι

2

Let N be total number of n-simplices in KP. Taking:

p? = max
(
p0,
⌈ logN

log 1+ι
2

⌉)
realizes the statement of the lemma.

G Proof of Lemma 4.6
Proof of Lemma 4.6. Under generic condition, σ is in the regular triangulation of P if and only if
there is a weighted point (PC(σ), µC(σ)) such that:

∀(Pi, µi) ∈ σ, D ((PC(σ), µC(σ)), (Pi, µi)) = 0 (42)
∀(Pi, µi) ∈ P \ σ, D ((PC(σ), µC(σ)), (Pi, µi)) > 0 (43)

Observe that, since τ ⊂ σ, (42) implies:

∀(Pi, µi) ∈ τ,D ((PC(σ), 0), (Pi, µi)) = µC(σ)

This and the definition (12) of bisector show that PC(σ) must be on the bisector of τ :

PC(σ) ∈ bisτ (44)

We get, for (Pi, µi) ∈ P:

D ((PC(σ), µC(σ)), (Pi, µi))
= (PC(σ)− Pi)2 − µC(σ)− µi
= (πbisτ (Pi)− PC(σ))2 + d(Pi,bisτ )2 − µC(σ)− µi
= Dbisτ

(
(PC(σ), µC(σ)), (πbisτ (Pi), µi − d(Pi,bisτ )2)

)
= Dbisτ ((PC(σ), µC(σ)), πτ (Pi, µi)) (45)

In the last two lines, the weighted distance is denoted Dbisτ instead of D in order to stress that,
thanks to (44) , it occurs on weighted point of bisτ × R rather than Rn × R. It result that (42)
and (43) are equivalent to:

∀(Pi, µi) ∈ σ, Dbisτ ((PC(σ), µC(σ)), πτ (Pi, µi)) = 0
∀(Pi, µi) ∈ P \ σ, Dbisτ ((PC(σ), µC(σ)), πτ (Pi, µi)) > 0

which precisely means that πτ (σ) is a coface of the vertex πτ (τ) = {(oτ ,−µC(τ))} in the regular
triangulation of πτ (P).

H Proof of Lemma 4.13
Proof. 1. follows from Corollary 4.7 item 1. together with Proposition 4.2.

2. follows from Corollary 4.7 item 2. together with Proposition 4.2.
For 3. consider a simplex σ ∈ X(τ). Φτ (σ) is a simplex in the link of Φτ (τ) in the lower convex

hull of Φτ (P) and therefore the convex cone CCσ with apex Φτ (τ) and going through Φτ (|σ|) is
on the boundary of the convex cone CCP with apex Φτ (τ) and going through the convex hull of
Φτ (P).
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Therefore Shτ (σ), intersection of CCσ with bisτ is on the boundary of the shadow polytope,
intersection of CCP with bisτ .

Shτ (σ) is bounded as being the convex hull of the shadow of its vertices. Thanks to observation
4.12, it is a facets of the boundary of the shadow polytope visible from 0. In the reverse direction,
a bounded facet of the boundary of the shadow polytope is precisely the shadow of a simplex
Φτ (σ) in the link of Φτ (τ) in the lower convex hull of Φτ (P) with all its vertices in Pτ . Therefore
σ ∈ X(τ).

I Proof of Lemma 5.2
Proof. We need to prove that for any simplex σ in the link of τ , one has:

∂ Trτ (Γ)(σ) = Trτ (∂Γ)(σ)

We have by definition that a (n− k − 2)-simplex σ is in Trτ (∂Γ)(σ) if and only if τ ∩ σ = ∅ and
τ ∪ σ is in ∂Γ. In other words, τ ∪ σ has an odd number of n-cofaces in the chain Γ. This in
turn means that σ has an odd number of (n − k)-cofaces in the trace of Γ in the link of τ , i.e.
σ ∈ ∂ Trτ (Γ).

J Proof of Lemma 5.3
Proof. Assume for a contradiction that x is in the relative interior of X, that is there is some
ρ > 0 such that B(x, ρ)∩X = B(x, ρ)∩∂C. Then all facets containing x are visible from O. if x is
not a vertex pf C, it belongs then to the relative interior of a convex face f in ∂C with dim f ≥ 1.
Then we have a contradiction since the function y 7→ d(P, y) is convex on f and cannot have an
interior local maximum at x. We assume now that x is a vertex of C.

Following for example [9, 10], denote by Tanx C and Norx C respectively the Tangent and
Normal cone to C at x. In case of a closed polytope they can be expressed as:

Tanx C =
⋂
ρ>0
{λ(c− x), λ ≥ 0, c ∈ B(x, ρ)}

and
Norx C = (Tanx C)⊥ =

def.
{u,∀v ∈ Tanx C, 〈u, v〉 ≤ 0} (46)

Since C is a convex polytope, Tanx C is a convex closed cone and one has [10]:

Tanx C = (Norx C)⊥ =
def.
{v,∀u ∈ Norx C, 〈u, v〉 ≤ 0} (47)

Each facet Fi of C containing x is supported by a half-space Hi = {y, 〈y−x, ni〉 ≤ 0} and one
has:

Norx C =
{∑

i

λini,∀i, λi ≥ 0
}

(48)

∀i, 〈O − x, ni〉 > 0

This with (48) gives:
∀u ∈ Norx C, 〈O − x, u〉 > 0 (49)

using (47) we get that O − x is in the interior of −Tanx C i.e.:

x−O ∈ (Tanx C)◦ (50)

Since x is a vertex of C, Tanx C is the convex hull of Tanx ∂C, therefore (50) implies at there are
t1, . . . tn+1 ∈ Tanx ∂C and λ1, . . . λn+1 ≥ 0 such that:

x−O =
∑
i

λiti
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which gives:
0 < 〈x−O, x−O〉 = 〈x−O,

∑
i

λiti〉 =
∑
i

λi〈x−O, ti〉

Since all the λi are not negative, there must be at least one i for which:

〈x−O, ti〉 > 0

This precisely means that y 7→ d(P, y) is increasing in the direction ti in a neighborhood of x in
X, a contradiction since x is assumed to be a local maximum of y 7→ d(P, y) in X.

K Proof of Lemma 6.1
Proof. Using the definition 3.3, one has:

(PC , µC) (πτ (τ) ∪ πτ (σ)) =
arg min
(P,µ)∈Rn×R

∀(Pi,µi)∈πτ (τ)∪πτ (σ),D((P,µ),(Pi,µi))=0

µ (51)

Looking at Definition 3.3 in the light of (45) in the proof of Lemma 4.6 in Appendix G, we
get that:

σ ⊃ τ ⇒ µC(σ) = µC(πτ (σ)) and PC(σ) = PC(πτ (σ)) (52)

Since both terms of (28) are invariant by a global translation, we can assume without loss of
generality and in order to make the computations simpler that oτ = 0.

In this case, as seen in (14) the coordinates of πτ (τ) are (0,−µC(πτ (τ)) = (0,−µC(τ)) by (52).
So that D ((P, µ), πτ (τ)) = 0 gives us:

µ = P 2 + µC(τ) (53)

It follows that among the weighted points (P, µ) that satisfy D ((P, µ), πτ (τ)) = 0, minimizing µ is
equivalent to minimizing P 2 and one can reformulate the characterization (51) of (PC , µC) (πτ (τ ∪ σ)) =
(PC , µC) (πτ (τ) ∪ πτ (σ)) as:

(PC , µC) (πτ (τ) ∪ πτ (σ)) =
arg min
(P,µ)∈Rn×R

∀(Pi,µi)∈πτ (τ)∪πτ (σ),D((P,µ),(Pi,µi))=0

P 2 (54)

For (P, µ) ∈ Rn−k × R, define the hyperplane Π(P,µ) in Rn−k × R as:

(X, z) ∈ Π(P,µ) ⇐⇒def.
z = (µ− P 2) + 2〈P,X〉 (55)

Observe that:
D ((P, µ), (Pi, µi)) = 0 ⇐⇒ lift(Pi, µi) ∈ Π(P,µ)

So that the definition of (PC , µC) (πτ (τ) ∪ πτ (σ)) given in (54) can be equivalently formulated as
Π(PC ,µC) being the hyperplane in Rn−k ×R that minimizes P 2

C among all hyperplanes containing
both lift(πτ (τ)) and all the points in lift(πτ (σ)).

But, as seen on (55), 2‖PC‖ is the slope of the hyperplane Π(PC ,µC) so that Π(P,µ) is the
hyperplane with minimal slope going through Φτ (τ) = lift(πτ (τ)) and all the points in Φτ (σ) =
lift(πτ (σ)). This slope 2‖PC‖ is also the slope of the unique (dim(σ) + 1)-dimensional affine space
F going through Φτ (τ) = lift(πτ (τ)) = (0, µC(τ)) and all the points in Φτ (σ) = lift(πτ (σ)). Since
F ∩ Rn−k × {0} is the affine space supporting Shτ (σ), one has:

d0(Shτ (σ)) = µC(τ)
2‖PC (πτ (τ) ∪ πτ (σ)) ‖
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so that, using (52) for the second equality:

d0(Shτ (σ)) = µC(τ)
2
√
µC (πτ (τ) ∪ πτ (σ))− µC(τ)

= µC(τ)
2
√
µC (τ ∪ σ)− µC(τ))

It follows that the map:
µC(τ ∪ σ)→ d0(Shτ (σ))

is decreasing.

L Proof of Lemma 6.2
Proof. If we denote by →

ρ
Γ the set of simplex in Γ with bounding weight equal to ρ:

→
ρ

Γ =
def.
{σ ∈ Γ, µB(σ) = ρ}

We claim that:
(↓ρ Γ1 vlex↓ρ Γ2) ⇒

(
→
ρ

Γ1 vlex→
ρ

Γ2

)
(56)

Indeed, by definition of the lexicographic order, if this did not holds, it would imply→
ρ

Γ1 6=→
ρ

Γ2 and the largest simplex for which →
ρ

Γ1 and →
ρ

Γ2 differ would be in Γ1 contradicting ↓ρ
Γ1 vlex↓ρ Γ2 which proves the claim (56).

Note that, from Lemma 3.5 and generic condition 3.2, all the simplices in →
ρ

Γ1 and →
ρ

Γ2 are
in the star of a single simplex τ = τρ such that µC(τ) = µB(τ) = ρ.

It remains to show that the order vlex restricted to simplices τ ∪ σ with µB(τ ∪ σ) = ρ
corresponds to the order vSh on the shadow of σ.

By definition of vlex, since in (5) one has always µ0(τ ∪σ1) = µ0(τ ∪σ2) = ρ, it goes like this:

σ1 < σ2 ⇐⇒
def.

{
∃k ≥ 1, µk(τ ∪ σ1) > µk(τ ∪ σ2)
and ∀j, 0 ≤ j < k, µj(τ ∪ σ1) = µj(τ ∪ σ2)

(57)

Observe that this expression is similar to (21).
For a 0-simplex {v} ∈ KP, the circumweight µC(τ ∪ {v}) is, according to Lemma 6.1, a

decreasing function of the distance d0(Shτ (η)) between its shadow and the origin. It follows
that for a (n − k − 1)-simplex σ ∈ KP, the vertex v for which the circumweight µC(τ ∪ {v}) is
minimal has its shadow Shτ (v) maximizing the distance to the origin. This minimal circumweight
is µ1(τ ∪ {v}) while this maximal distance is δ0(σ).

More generally, looking at (20) and (4), Lemma 6.1 allows to check that the simplex Θk(σ) of
(4) in the star of τ in KP corresponds to the simplex τk−1(σ) in (20) in the link of τ :

Θk(σ) = τ ∪ τk−1(σ)

So that for σ1, σ2 ∈ KP referring to (21) and (57):

µk(τ ∪ σ1) ≤ µk(τ ∪ σ2) ⇐⇒ δk−1(σ1) ≥ δk−1(σ2)

It follows that, for Γ1,Γ2 ∈ Cn(KP) and τ = τρ:

→
ρ

Γ1 vlex→
ρ

Γ2 ⇐⇒

{
Shτ

(
Trτρ (↓ρ Γ1)

)
vSh Shτρ

(
Trτρ (↓ρ Γ2)

)
which, with claim (56), ends the proof.
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