
HAL Id: hal-02391240
https://hal.archives-ouvertes.fr/hal-02391240

Submitted on 3 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lexicographic optimal homologous chains and
applications to point cloud triangulations

David Cohen-Steiner, André Lieutier, Julien Vuillamy

To cite this version:
David Cohen-Steiner, André Lieutier, Julien Vuillamy. Lexicographic optimal homologous chains and
applications to point cloud triangulations. 2019. �hal-02391240�

https://hal.archives-ouvertes.fr/hal-02391240
https://hal.archives-ouvertes.fr

Lexicographic optimal homologous chains and applications to
point cloud triangulations

David Cohen-Steiner1, André Lieutier2, and Julien Vuillamy1,2

1Université Côte d’Azur, France and Inria Sophia Antipolis-Mediterranée, France
2Dassault Systèmes, France

December 3, 2019

Abstract
This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP),

where optimality is meant as a minimal lexicographic order on chains induced by a total or-
der on simplices. The matrix reduction algorithm used for persistent homology is used to
derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in
the general case. The complexity is further improved to a quasilinear algorithm by leveraging
a dual graph minimum cut formulation when the simplicial complex is a strongly connected
pseudomanifold. We then show how this particular instance of the problem is relevant, by
providing an application in the context of point cloud triangulation.

1 Introduction
The computation of minimal simplicial homology generators has been a wide subject of interest for
its numerous applications related to shape analysis, computer graphics or computer-aided design.
Coined in [18], we recall the Optimal Homologous Chain Problem (OHCP):

Problem 1.1 (OHCP). Given a p-chain A in a simplicial complex K and a set of weights given by
a diagonal matrix W of appropriate dimension, find the 1-norm minimal chain Γmin homologous
to A:

Γmin = min
Γ,B
||W · Γ||1 such that Γ = A+ ∂d+1B and Γ ∈ Cp (K) , B ∈ Cp+1 (K)

It has been shown that OHCP is NP-hard in the general case when using coefficients in Z2 [12,
8]. However, we consider a specialization of this problem: the Lexicographic Optimal Homologous
Chain Problem (Lex-OHCP). Using coefficients in Z2, minimality is now meant according to a
lexicographic order on chains induced by a total order on simplices. Formulated in the context of
OHCP, this would require ordering the simplices using a total order and taking a weight matrixW
with generic termWii = 2i, allowing the L1-norm minimization to be equivalent to a minimization
along the lexicographic order.

After providing required definitions and notations (Section 2), we show how an algorithm based
on the matrix reduction algorithm used for the computation of persistent homology [22] allows
to solve this particular instance of OHCP in O(n3) worst case complexity (Section 3). Using a
very similar process, we show that the problem of finding a minimal d-chain bounding a given
(d−1)-cycle admits a similar algorithm with the same algorithmic complexity (Section 4). Section
5 then considers Lex-OHCP in the case where the simplicial complex K is a strongly connected
(d+1)-pseudomanifold. By formulating it as a Lexicographic Minimum Cut (LMC) dual problem,
the algorithm can be improved to a quasilinear complexity. The complexity of the graph minimum
cut – or equivalently maximum flow – over arbitrary weights is O(E2) for a graph with E edges
[23]. Its lexicographic variant can however be performed in O(E logE) complexity: the cost of
sorting the graph edges and performing a O(Eα(E)) algorithm based on disjoint-sets, where α is

1

the inverse Ackermann function. Section 6 legitimizes this restriction of OHCP by providing an
application of the developed Lex-OHCP algorithms to point cloud triangulation. After defining a
total order closely related to the Delaunay triangulation, we provide details on an open surface
algorithm given a boundary and a watertight surface reconstruction algorithm given an interior
and exterior information.

Several authors have studied algorithm complexities for the computation of L1-norm optimal
cycles in homology classes [24, 10, 8, 11, 20, 12, 18, 19]. However, to the best of our knowledge,
considering lexicographic-minimal chains in their homology classes is a new idea. When minimal
cycles are of codimension 1 in a pseudo-manifold, the idea of considering the minimal cut problem
on the dual graph has been previously studied. In particular, Chambers et al. [8] have considered
graph duality to derive complexity results for the computation of optimal homologous cycles on
2-manifolds. Chen et al. [12] also use a reduction to a minimum cut problem on a dual graph to
compute minimal non-null homologous cycles on n-complexes embedded in Rn. Their polynomial
algorithm (Theorem 5.2.3 in [12]) for computing a homology class representative of minimal radius
is reminiscent of our algorithm for computing lexicographic minimal representatives (Algorithm
4). In a recent work [19], Dey et al. consider the dual graph of pseudo-manifolds in order to
obtain polynomial time algorithms for computing minimal persistent cycles. Since they consider
arbitrary weights, they obtain the O(n2) complexity of best known minimum cut/maximum flow
algorithms [31]. The lexicographic order introduced in our work can be derived from the idea
of a variational formulation of the Delaunay triangulation, first introduced in [13] and further
studied in [1, 14]. Finally, many methods have been proposed to answer the problem of surface
reconstruction in specific acquisition contexts [27, 28, 30]: [29] classifies a large number of these
methods according to the assumptions and information used in addition to geometry. In the family
of purely geometric reconstruction based on a Delaunay triangulation, one very early contribution
is the sculpting algorithm by Boissonnat [6]. The crust algorithm by Amenta et al. [2, 3] and an
algorithm based on natural neighbors by Boissonnat et al. [7] were the first algorithms to guarantee
a triangulation of the manifold under sampling conditions. However, these general approaches
usually have difficulties far from these sampling conditions, in applications where point clouds are
noisy or under-sampled. This difficulty can be circumvented by providing additional information
on the nature of the surface [17, 21]. Our contribution lies in this category of approaches. We
provide some topological information of the surface: a boundary for the open surface reconstruction
and an interior region and exterior region for the closed surface reconstruction.

2 Definitions
2.1 Simplicial complexes
Consider an independent family A = (a0, . . . , ad) of points of RN . We call a d-simplex σ spanned
by A the set of all points: x =

∑d
i=0 tiai, where ∀i ∈ [0, d], ti ≥ 0 and

∑d
i=0 ti = 1 Any simplex

spanned by a subset of A is called a face of σ.
A simplicial complex K is a collection of simplices such that every face of a simplex of K is

in K and the intersection of two simplices of K is either empty either a common face.

2.2 Simplicial chains.
Let K be a simplicial complex of dimension at least d. The notion of chains can be defined with
coefficients in any ring but we restrict here the definition to coefficients in the field Z2 = Z/2Z.
A d-chain A with coefficients in Z2 is a formal sum of d-simplices :

A =
∑

i

xiσi, with xi ∈ Z2 and σi ∈ K (1)

We denote Cd (K) the vector space over the field Z2 of d-chains in the complex K. Interpreting
the coefficient xi ∈ Z2 = {0, 1} in front of simplex σi as indicating the existence of σi in the
chain A, we can view the d-chain A as a set of simplices : for a d-simplex σ and a d-chain A, we
write that σ ∈ A if the coefficient for σ in A is 1. With this convention, the sum of two chains

2

corresponds to the symmetric difference on their sets. In what follows, a d-simplex σ can also be
interpreted as the d-chain containing only the d-simplex σ.

2.3 Boundary operator.
For a d-simplex σ = [a0, . . . , ad], the boundary operator is defined as the operator:

∂d : Cd (K)→ Cd−1 (K)

∂dσ =
def.

d∑
i=0

[a0, . . . , âi, . . . , ad]

where the symbol âi means the vertex ai is deleted from the array. The kernel of the boundary
operator Zd = Ker ∂d is called the group of d-cycles and the image of the operator Bd = Im ∂p+1
is the group of d-boundaries. We say two d-chains A and A′ are homologous if A−A′ = ∂d+1B,
for some (d+ 1)-chain B.

2.4 Lexicographic order.
We assume now a total order on the d-simplices of K, σ1 < · · · < σn, where n = dim Cd (K).
From this order, we define a lexicographic total order on d-chains.

Definition 2.1 (Lexicographic total order). For C1, C2 ∈ Cd (K):

C1 vlex C2 ⇐⇒
def.

C1 + C2 = 0
or
σmax = max {σ ∈ C1 + C2} ∈ C2

This total order naturally extends to a strict total order @lex on Cd (K).

3 Lexicographic optimal homologous chain
3.1 Problem statement
In this section, we define the Lexicographic Optimal Homologous Chain Problem (Lex-OHCP), a
particular instance of OHCP (Problem 1.1):

Problem 3.1 (Lex-OHCP). Given a simplicial complex K with a total order on the d-simplices
and a d-chain A ∈ Cd (K), find the unique chain Γmin defined by :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∃B ∈ Cd+1 (K) ,Γ−A = ∂d+1B}

Definition 3.1. A d-chain A ∈ Cd (K) is said reducible if there is a d-chain Γ ∈ Cd (K) (called
reduction) and a (d+ 1)-chain B ∈ Cd+1 (K) such that:

Γ @lex A and Γ−A = ∂d+1B

If this property cannot be verified, the d-chain A is said irreducible. If A is reducible, we call
total reduction of A the unique irreducible reduction of A. If A is irreducible, A is said to be its
own total reduction.

Problem 3.1 can be reformulated as finding the total reduction of A.

3

3.2 Boundary matrix reduction
With m = dim Cd (K) and n = dim Cd+1 (K), we now consider the m-by-n boundary matrix
∂d+1 with entries in Z2. We enforce that rows of the matrix are ordered according to a given
strict total order on d-simplices σ1 < · · · < σm, where the d-simplex σi is the basis element
corresponding to the ith row of the boundary matrix. The order of columns, corresponding to an
order on (d+ 1)-simplices, is not relevant for this section and can be chosen arbitrarily.

For a matrix R, the index of the lowest non-zero coefficient of a column Rj is denoted by
low(j), or sometimes low(Rj) when we want to explicit the considered matrix. This index is not
defined for a column whose coefficients are all zero.

Algorithm 1 is a slightly modified version of the boundary reduction algorithm presented in
[22]. Indeed, for our purpose, we do not need the boundary matrix storing all the simplices of all
dimensions and apply the algorithm to the sub-matrix ∂d+1 : Cd+1 (K) → Cd (K). One checks
easily that Algorithm 1 has O(mn2) time complexity. We now introduce a few lemmas useful for

Algorithm 1: Reduction algorithm for the ∂d+1 matrix
R = ∂d+1
for j ← 1 to n do

while Rj 6= 0 and ∃j0 < j with low(j0) = low(j) do
Rj ← Rj +Rj0

end
end

solving Problem 3.1. We allow ourselves to consider each column Rj of the matrix R, formally an
element of Zm

2 , as the corresponding d-chain in the basis (σ1, . . . , σm).

Lemma 3.2. A d-chain A is reducible if and only if at least one of its d-simplices is reducible.

Proof. If there is a reducible d-simplex σ ∈ A, A is reducible by the d-chain A′ = A−σ+Red(σ),
where Red(σ) is a reduction for σ.
We suppose A to be reducible. Let Γ @lex A be a reduction for A and B the (d + 1)-chain
such that Γ − A = ∂B. We denote σmax = max {σ ∈ A− Γ}. Note that σmax is homologous to
Γ − A + σmax. The chain Γ − A + σmax only contains simplices smaller than σmax, by definition
of the lexicographic order (Definition 2.1). We have thus shown that if A is reducible, it contains
at least one simplex that is reducible.

Lemma 3.3. After matrix reduction (Algorithm 1), a non-zero column Rj 6= 0 can be described
as

Rj = σlow(j) + Γ, where Γ is a reduction for σlow(j).

Proof. As all matrix operations performed on R by the reduction algorithm are linear, each non-
zero column Rj of R is in the image of ∂d+1. Therefore, there exist a (d + 1)-chain B such that
Rj = σlow(j) + Γ = ∂d+1B, which, is equivalent in Z2 to Γ− σlow(j) = ∂d+1B. By definition of the
low of a column, we also have immediately: Γ @lex σlow(j). For each non-zero column, the largest
simplex is therefore reducible by the other d-simplices of the column.

Lemma 3.4. After matrix reduction (Algorithm 1), there is a one-to-one correspondence between
the reducible d-simplices and non-zero columns of R:

σi ∈ Cd (K) is reducible ⇐⇒ ∃j ∈ [1, n], Rj 6= 0 and low(j) = i

Proof. Lemma 3.3 shows immediately that the simplex corresponding to the lowest index of a
non-zero column is reducible.

Suppose now that a d-simplex σ̃ is reducible and let Γ̃ be a reduction of it: σ̃+Γ̃ = ∂d+1B and
Γ̃ @lex σ̃. Algorithm 1 realizes the matrix factorization R = ∂d+1 ·V , where matrix V is invertible

4

[22]. It follows that ImR = Im ∂d+1. Therefore, non-zero columns of R span Im ∂d+1 and since
σ̃+ Γ̃ = ∂d+1B ∈ Im ∂d+1, there is a family (Rj)j∈J = (σlow(j),Γj)j∈J of columns of R such that :

σ̃ + Γ̃ =
∑
j∈J

σlow(j) + Γj

Every σlow(j) represents the largest simplex of a column, and Γj a reduction chain for σlow(j). As
observed in section VII.1 of [22], one can check that the low indexes in R are unique after the
reduction algorithm. Therefore, there is a jmax ∈ J such that for all j in J \ {jmax}, low(j) <
low(jmax), which implies:

σjmax = max{σ ∈
∑
j∈J

σlow(j) + Γj} = max
{
σ ∈ σ̃ + Γ̃

}
= σ̃

We have shown that for the reducible simplex σ̃, there is a non-zero column Rjmax with σ̃ =
σlow(jmax) as its largest simplex.

3.3 Total reduction algorithm
Combining the three previous lemmas give the intuition on how to construct the total reduction
solving Problem 3.1: Lemma 3.2 allows to consider each simplex individually, Lemma 3.4 char-
acterizes the reducible nature of a simplex using the reduced boundary matrix and Lemma 3.3
describes a column of the reduction boundary matrix as a simplex and its reduction. We now
present Algorithm 2, referred to as the total reduction algorithm. For a d-chain Γ, Γ[i] ∈ Z2
denotes the coefficient of the ith simplex in the chain Γ.

Algorithm 2: Total reduction algorithm
Inputs : A d-chain Γ, the reduced boundary matrix R
for i← m to 1 do

if Γ[i] 6= 0 and ∃j ∈ [1, n] with low(j) = i in R then
Γ← Γ +Rj

end
end

Proposition 3.5. Algorithm 2 finds the total reduction of a given d-chain in O(m2) time com-
plexity.

Proof. In Algorithm 2, let Γi−1 be the value of the variable Γ after iteration i. Since the iteration
counter i decreases from m to 1, the input and output of the algorithm are respectively Γm and
Γ0. At each iteration, Γi−1 are either equal to Γi or Γi + Rj . Since Rj ∈ Im ∂d+1, Γi−1 is in
both cases homologous to Γi. Therefore, Γ0 is homologous to Γm. We are left to show that Γ0 is
irreducible. From Lemma 3.2, it is enough to check that it does not contain any reducible simplex.
Let σi be a reducible simplex and let us show that σi /∈ Γ0. Two possibilities may occur:

– if σi ∈ Γi, then Γi−1 = Γi +Rj . Since low(j) = i, we have σi ∈ Rj and therefore σi /∈ Γi−1.

– if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

Furthermore, from iterations i−1 to 1, the added columns Rj contain only simplices smaller than
σi and therefore σi /∈ Γi−1 ⇒ σi /∈ Γ0.

Observe that using an auxiliary array allows to compute the correspondence low(j)→ i in time
O(1). The column addition nested inside the loop lead to a O(m2) time complexity for Algorithm
2.

It follows that Problem 3.1 can be solved in O(mn2) time complexity, by applying successively
Algorithms 1 and 2, or in O(N3) complexity if N is the size of the simplicial complex.

5

4 Lexicographic-minimal chain under imposed boundary
4.1 Problem statement
This section will study a variant of Lex-OHCP (Problem 4.1) in order to solve the subsequent
problem of finding a minimal d-chain bounding a given (d− 1)-cycle (Problem 4.2).

Problem 4.1. Given a simplicial complex K with a total order on the d-simplices and a d-chain
Γ0 ∈ Cd (K), find :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∂dΓ = ∂dΓ0}

Problem 4.2. Given a simplicial complex K with a total order on the d-simplices and a (d− 1)-
cycle A, check if A is a boundary:

BA =
def.
{Γ ∈ Cd (K) | ∂dΓ = A} 6= ∅

If it is the case, find the minimal d-chain Γ bounded by A:

Γmin = min
vlex

BA

In Problem 4.2, finding a representative Γ0 in the set BA 6= ∅ such that ∂dΓ0 = A is sufficient:
we are then taken back to Problem 4.1 to find the minimal d-chain Γmin such that ∂dΓmin =
∂dΓ0 = A.

4.2 Boundary reduction transformation matrix
As in Section 3, we will derive an algorithmic solution to Problem 4.1 from the result of the
boundary matrix reduction algorithm. Note that, unlike Section 3 that used the ∂d+1 boundary
operator, we are now considering ∂d, meaning the given total order on d-simplices applies to the
greater dimension of the matrix. An arbitrary order can be taken for the (d − 1)-simplices to
build the matrix ∂d. Indeed, if we see the performed reduction in matrix notation as R = ∂d · V ,
the minimization steps in this section will be performed on the transformation matrix V , whose
rows do follow the given simplicial ordering. The number of zero columns of R is the dimension of
Zd = Ker ∂d [22]. Let’s denote it by nKer = dim(Zd). By selecting all columns in V corresponding
to zero columns in R, we obtain the matrix V Ker, whose columns V Ker

1 , . . . , V Ker
nKer form a basis of

Zd. We first show a useful property on the matrix V Ker. Note that the low index for any column
in V Ker is well defined, as V is invertible.

Lemma 4.1. Indexes
{

low(V Ker
i)

}
i∈[1,nKer] are unique:

i 6= j ⇒ low(V Ker
i) 6= low(V Ker

j)

If A ∈ Ker ∂d \ {0}, there exists a unique column V Ker
max of V Ker with low(V Ker

max) = low(A).

Proof. Before the boundary matrix reduction algorithm, the initial matrix V is the identity: the
low indexes are therefore unique. During iterations of the algorithm, the matrix V is right-
multiplied by an column-adding elementary matrix Lj0,j , adding column j0 to j with j0 < j.

Lj0,j =

j

1
1 1 j0

. . .
1

. . .
1

6

Therefore, the indexes {low(Vi), Vi ∈ V } stay on the diagonal during the reduction algorithm and
are therefore unique. The restriction of V to V Ker does not change this property.

If A ∈ Ker ∂d \ {0}, A can be written as a non-zero linear combination of columns (V Ker
i)i∈I

of V Ker. Call imax = low(A) the index of the largest element σimax in A. Suppose no column of
(V Ker

i)i∈I has imax as its low index. By existence of σimax in A, there is an odd number of columns
V Ker

j ∈ (V Ker
i)i∈I satisfying σimax ∈ V Ker

j with low(V Ker
j) > imax. We have shown however that

the lows of V Ker are unique, which implies the lows of columns V Ker
j would appear in A: this

contradicts the definition of imax as the low of A.

4.3 Total reduction with imposed boundary
We apply a similar total reduction algorithm as previously introduced in Section 3 but using the
matrix V Ker. In the following algorithm, m = dim Cd (K).

Algorithm 3: Total reduction variant
Inputs : A d-chain Γ and V Ker

for i← m to 1 do
if Γ[i] 6= 0 and ∃j ∈ [1, nKer] with low(j) = i in V Ker then

Γ← Γ + V Ker
j

end
end

Proposition 4.2. Algorithm 3 computes the solution for Problem 4.1 in O(m2) time complexity.

Proof. The proof is similar to the one of Proposition 3.5.
In Algorithm 3, we denote by Γi−1 the value of variable Γ after iteration i. Since iteration counter
i is decreasing from m to 1, the input and output of the algorithm are respectively Γm and Γ0.
Since V Ker

j ∈ Ker ∂d, at each iteration ∂Γi−1 = ∂Γi therefore ∂Γ0 = ∂Γm. We are left to show the
algorithm’s result is the minimal solution.

Suppose there is Γ? such that ∂dΓ? = ∂Γ and Γ? @lex Γ0. Let’s consider the difference Γ0−Γ?,
and its largest element index low(Γ0 − Γ?) = i, with σi ∈ Γ0 and σi /∈ Γ? by Definition 2.1 of the
lexicographic order. As Γ0 − Γ? ∈ Ker ∂d \ {0}, there has to be a column V Ker

j in V Ker where
low

(
V Ker

j

)
= i, from Lemma 4.1. Two possibilities may occur at iteration i:

– if σi ∈ Γi, then Γi−1 = Γi + V Ker
j . Since i = low(j), we have σi ∈ V Ker

j and therefore
σi /∈ Γi−1.

– if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

However, from iterations i− 1 to 1, the added columns V Ker
j contains only simplices with indices

smaller than i and therefore we obtain σi /∈ Γi−1 ⇒ σi /∈ Γ0, a contradiction to the definition of
σi as the largest element of Γ? − Γ0.

4.4 Finding a representative of BA

As previously mentioned, solving Problem 4.2 requires deciding if the set BA is empty and in case
it is not empty, finding an element of the set BA. Algorithm 3 can then be used to minimize
this element under imposed boundary. In the following algorithm, m = dim Cd−1 (K) and n =
dim Cd (K).

Proposition 4.3. Algorithm 4 decides if the set BA is non-empty, and in that case, finds a
representative Γ0 such that ∂Γ0 = A in O(m2) time complexity.

Proof. We start by two trivial observations from the definition of a reduction. First, A is a
boundary if and only if its total reduction is the null chain. Second, if a non-null chain is a
boundary, then its greatest simplex is reducible.

7

Algorithm 4: Finding a representative
Inputs : A (d− 1)-chain A, a boundary matrix R reduced by V
Γ0 ← ∅
A0 ← A
for i← m to 1 do

if A0[i] 6= 0 then
if ∃j ∈ [1, n] with low(j) = i in R then

A0 ← A0 +Rj

Γ0 ← Γ0 + Vj

else
The set BA is empty.

end
end

end

If, at iteration i, A0[i] 6= 0, then σi is the greatest simplex in A0. In the case R has no column
Rj such that low(j) = i, σi is not reducible by Lemma 3.4 and therefore A0 is not a boundary.
Since A and A0 differ by a boundary (added columns of R), A is not a boundary either. This
means the set BA is empty.
The main difference with the previous chain reduction is we keep track of the column operations
in Γ0. If the total reduction of A is null, we have found a linear combination (Rj)j∈J such
that A =

∑
j∈J Rj . We have also computed Γ0 as the sum of the corresponding columns in V :

Γ0 =
∑

j∈J Vj . As R = ∂d · V , we can now verify:

∂dΓ0 = ∂d

∑
j∈J

Vj

 =
∑
j∈J

Rj = A

5 Efficient algorithm for codimension 1 (dual graph)
In this section we focus on Problem 5.1, a specialization of Problem 3.1, namely when K is a
subcomplex of a (d+ 1)-pseudomanifold.

5.1 Problem statement
Recall that a d-dimensional simplicial complex is said pure if it is of dimension d and any simplex
has at least one coface of dimension d.
Definition 5.1. A d-pseudomanifold is a pure d-dimensional simplicial complex for which each
(d− 1)-face has exactly two d-dimensional cofaces.
Definition 5.2. The dual graph of a d-pseudomanifoldM is the graph whose vertices are in one-
to-one correspondence with the d-simplices ofM and whose edges are in one-to-one correspondence
with (d − 1)-simplices of M : an edge e connects two vertices v1 and v2 of the graph if and only
if e corresponds to the (d− 1)-face with cofaces corresponding to v1 and v2.
Definition 5.3. A strongly connected d-pseudomanifold is a d-pseudomanifold whose dual
graph is connected.

Given a strongly connected (d + 1)-pseudomanifold M and τ1 6= τ2 two (d + 1)-simplices of
M, we consider a special case of Problem 3.1 where K =M\ {τ1, τ2} and A = ∂τ1:
Problem 5.1. Given a strongly connected (d + 1)-pseudomanifold M with a total order on the
d-simplices and two distinct (d+ 1)-simplices (τ1, τ2) ofM, find:

Γmin = min
vlex

{Γ ∈ Cp (M) | ∃B ∈ Cd+1 (M\ {τ1, τ2}) ,Γ− ∂τ1 = ∂B}

8

Definition 5.4. Seeing a graph G as a 1-dimensional simplicial complex, we define the cobound-
ary operator ∂0 : C0 (G)→ C1 (G) as the linear operator defined by the transpose of the matrix
of the boundary operator ∂1 : C1 (G)→ C0 (G) in the canonical basis of simplices.1

For a given graph G = (V, E), V and E respectively denote its vertex and edge sets. For a
d-chain α ∈ Cd (M) and a (d + 1)-chain β ∈ Cd+1 (M), α̃ and β̃ denote their respective dual
1-chain and dual 0-chain in the dual graph G(M) ofM. We easily see that:

Remark 5.5. For a set of vertices V0 ⊂ V, ∂0V0 is exactly the set of edges in G = (V, E) that
connect vertices in V0 with vertices in V \ V0.

Remark 5.6. Let M be a (d + 1)-pseudomanifold. If α ∈ Cd (M) and β ∈ Cd+1 (M), then
α̃ = ∂0β̃ ⇐⇒ α = ∂d+1β.

5.2 Codimension 1 and Lexicographic Min Cut (LMC)
The order on d-simplices of a (d+1)-pseudomanifoldM naturally defines a corresponding order on
the edges of the dual graph: τ1 < τ2 ⇐⇒ τ̃1 < τ̃2. This order extends similarly to a lexicographic
order vlex on sets of edges (or, equivalently, 1-chains) in the graph.

In what follows, we say a set of edges Γ̃ disconnects τ̃1 and τ̃2 in the graph (V, E) if τ̃1 and
τ̃2 are not in the same connected component of the graph (V, E \ Γ̃).

Given a graph with weighted edges and two vertices, the min-cut/max-flow problem [23, 31]
consists in finding the minimum cut (i.e. set of edges) disconnecting the two vertices, where
minimum is meant as minimal sum of weights of cut edges. We consider a similar problem where
the minimum is meant in term of a lexicographic order: the Lexicographic Min Cut (LMC).

Problem 5.2 (LMC). Given a connected graph G = (V, E) with a total order on E and two vertices
τ̃1, τ̃2 ∈ V, find the set Γ̃LMC ⊂ E minimal for the lexicographic order vlex, that disconnects τ̃1
and τ̃2 in G.

Proposition 5.7. Γmin is solution of Problem 5.1 if and if only its dual 1-chain Γ̃min is solution
of Problem 5.2 on the dual graph G(M) of M where τ̃1 and τ̃2 are respective dual vertices of τ1
and τ2.

Proof. Problem 5.1 can be equivalently formulated as:

Γmin = min
vlex

{∂d+1(τ1 +B) | B ∈ Cd+1 (M\ {τ1, τ2})} (2)

Using Observation 5.6, we see that Γmin is the minimum in Equation (2) if and only if its dual
1-chain Γ̃min satisfies:

Γ̃min = min
vlex

{
∂0(τ̃1 + B̃) | B̃ ⊂ V \ {τ̃1, τ̃2}

}
(3)

Denoting Γ̃LMC the minimum of Problem 5.2, we need to show that Γ̃LMC = Γ̃min.
As Γ̃LMC disconnects τ̃1 and τ̃2 in G = (V, E), τ̃2 is not in the connected component of τ̃1 in
(V, E \ Γ̃LMC). We define B̃ as the connected component of τ̃1 in (V, E \ Γ̃LMC) minus τ̃1. We
have that B̃ ⊂ V \ {τ̃1, τ̃2}. Consider an edge e ∈ ∂0(τ̃1 + B̃). From Observation 5.5, e connects a
vertex va ∈ {τ̃1} ∪ B̃ with a vertex vb /∈ {τ̃1} ∪ B̃. From the definition of B̃, Γ̃LMC disconnects va

and vb in G, which in turn implies e ∈ Γ̃LMC. We have therefore shown that ∂0(τ̃1 + B̃) ⊂ Γ̃LMC.
Using Equation (3), we get:

Γ̃min vlex ∂
0(τ̃1 + B̃) vlex Γ̃LMC (4)

Now we claim that if there is a C̃ ⊂ V \{τ̃1, τ̃2} with Γ̃ = ∂0(τ̃1 + C̃), then Γ̃ disconnects τ̃1 and τ̃2
in (V, E). Consider a path in G from τ̃1 to τ̃2. Let va be the last vertex of the path that belongs
to {τ̃1}∪ C̃ and vb the next vertex on the path (which exists since the τ̃2 is not in {τ̃1}∪ C̃). From
Observation 5.5, we see that the edge (va, vb) must belong to Γ̃ = ∂0(τ̃1 + C̃). We have shown
that any path in G connecting τ̃1 and τ̃2 has to contain an edge in Γ̃ and the claim is proved.

1In order to avoid to introduce non essential formal definitions, the coboundary operator is defined over chains
since, for finite simplicial complexes, the canonical inner product defines a natural bijection between chains and
cochains.

9

In particular, the minimum Γ̃min disconnects τ̃1 and τ̃2 in (V, E). As Γ̃LMC denotes the minimum
of Problem 5.2, Γ̃LMC vlex Γ̃min which, together with Equation (4), gives us Γ̃LMC = Γ̃min. We
have therefore shown the minimum defined by Equation (3) coincides with the minimum defined
in Problem 5.2.

5.3 Algorithm for Lexicographic Min Cut
In light of the new problem equivalency, we will study an algorithm solving Problem 5.2. As we
will only consider the dual graph for this section, we leave behind the dual chain notation: vertices
τ̃1 and τ̃2 are replaced by α1 and α2, and the solution to the problem is simply noted ΓLMC. The
following lemma exposes a constructive property of the solution on subgraphs.

Lemma 5.8. Consider ΓLMC solution of Problem 5.2 for the graph G = (V, E) and α1, α2 ∈ V.
Let e0 be an edge in V × V such that e0 < min{e ∈ E}. Then:

(a) The solution for (V, E ∪ {e0}) is either ΓLMC or ΓLMC ∪ {e0}.

(b) ΓLMC ∪ {e0} is solution for (V, E ∪ {e0}) if and only if α1 and α2 are connected in (V, E ∪
{e0} \ ΓLMC).

Proof. Let’s call Γ′LMC the solution for (V, E ∪ {e0}). Since Γ′LMC ∩ E disconnects α1 and α2 in
(V, E), one has ΓLMC vlex Γ′LMC. Since ΓLMC ∪ {e0} disconnects α1 and α2 in (V, E ∪ {e0}), we
also have Γ′LMC vlex ΓLMC ∪ {e0}. Therefore, ΓLMC vlex Γ′LMC vlex ΓLMC ∪ {e0}.

As e0 < min{e ∈ E}, there is no set in E ∪ {e0} strictly between ΓLMC and ΓLMC ∪ {e0} for
the lexicographic order. It follows that Γ′LMC is either equal to ΓLMC or ΓLMC ∪ {e0}. The choice
for Γ′LMC is therefore ruled by the property that it should disconnect α1 and α2: if α1 and α2
are connected in (V, E ∪ {e0} \ ΓLMC), ΓLMC does not disconnect α1 and α2 in (V, E ∪ {e0}) and
ΓLMC ∪ {e0} has to be the solution for (V, E ∪ {e0}). On the other hand, if α1 and α2 are not
connected in (V, E ∪ {e0} \ ΓLMC), then both ΓLMC and ΓLMC ∪ {e0} disconnect α1 and α2 in
(V, E ∪{e0}), but as ΓLMC @lex ΓLMC∪{e0}, ΓLMC∪{e0} is not the solution for (V, E ∪{e0}).

Building an algorithm from Lemma 5.8 suggests a data structure able to check if vertices
α1 and α2 are connected in the graph: the disjoint-set data structure, introduced for finding
connected components [25], does exactly that. In this structure, each set of elements has a
different root value, called representative. Calling the operation MakeSet on an element creates
a new set containing this element. The FindSet operation, given an element of a set, returns the
representative of the set. For all elements of the same set, FindSet will of course return the same
representative. Finally, the structure allows merging two sets, by using the UnionSet operation.
After this operation, elements of both sets will have the same representative.

We now describe Algorithm 5. The algorithm expects a set of edges sorted in decreasing order
according to the lexicographic order.

Proposition 5.9. Algorithm 5 computes the solution of Problem 5.2 for a given graph (V, E) and
two vertices α1, α2 ∈ V. Assuming the input set of edges E are sorted, the algorithm has O(nα(n))
time complexity, where n is the cardinal of E and α the inverse Ackermann function.

Proof. We denote by ei the ith edge along the decreasing order and Γi
LMC the value of the variable

ΓLMC of the algorithm after iteration i. The algorithm works by incrementally adding edges in
decreasing order and tracking the growing connected components of the set associated with α1
and α2 in (V, {e ∈ E , e ≥ ei} \ Γi

LMC), for i = 1, . . . , n.
At the beginning, no edges are inserted, and Γ0

LMC = ∅ is indeed solution for (V,∅). With
Lemma 5.8, we are guaranteed at each iteration i to find the solution for (V, {e ∈ E , e ≥ ei}) by
only adding to Γi−1

LMC the current edge ei if α1 and α2 are connected in {e ∈ E , e ≥ ei} \ Γi−1
LMC,

which is done in the if-statement. If the edge is not added, we update the connectivity of the
graph (V, {e ∈ E , e ≥ ei} \ Γi

LMC) by merging the two sets represented by r1 and r2. After each
iteration, Γi

LMC is solution for (V, {e ∈ E , e ≥ ei}) and when all edges are processed, Γn
LMC is

solution for (V, E).
The complexity of the MakeSet, FindSet and UnionSet operations have been shown to

be respectively O(1), O(α(v)) and O(α(v)), where α(v) is the inverse Ackermann function on

10

Algorithm 5: Lexicographic Min Cut
Inputs : G = (V, E) and α1, α2 ∈ V, with E = {ei, i = 1, . . . , n} in decreasing order
Output: ΓLMC
ΓLMC ← ∅
for v ∈ V do

MakeSet(v)
end
for e ∈ E in decreasing order do

e = (v1, v2) ∈ V × V
r1 ← FindSet(v1), r2 ← FindSet(v2)
c1 ← FindSet(α1), c2 ← FindSet(α2)
if {r1, r2} = {c1, c2} then

ΓLMC ← ΓLMC ∪ e
else

UnionSet(r1, r2)
end

end

the cardinal of the vertex set [32]. Assuming sorted edges as input of the algorithm – which is
performed in O(n ln(n)), the algorithm runs in O(nα(n)) time complexity.

6 Application to point cloud triangulation
In all that precedes, the order on simplices was not specified and one can wonder if choosing such
an ordering makes the specialization of OCHP too restrictive for it to be useful. In this section,
we give a concrete example where this restriction makes sense and provides a simple and elegant
application to the problem of point cloud triangulation. Whereas all that preceded dealt with an
abstract simplicial complex, we now consider a bijection between vertices and a set of points in
Euclidean space, allowing to compute geometric quantities on simplices.

6.1 Simplicial ordering
Recent works have studied a characterization of the 2D Delaunay triangulation as a lexicographic
minimum over 2-chains. Denote by RB(σ) the radius of the smallest enclosing ball and RC(σ)
the radius of the circumcircle of a 2-simplex σ. Based on [16, 15], we define the total order on
2-simplices:

σ1 ≤ σ2 ⇐⇒

RB(σ1) < RB(σ2)
or
RB(σ1) = RB(σ2) and RC(σ1) ≥ RC(σ2)

(5)

Under generic condition on the position of points, we can show this order is total. In what follows,
the lexicographic order vlex is induced by this order on simplices. The following proposition from
[15] shows a strong link between the simplex ordering and the 2D Delaunay triangulation.

Proposition 6.1 (Proposition 7.9 in [15]). Let P = {P1, . . . , PN} ⊂ R2 with N ≥ 3 be in general
position and let KP be the 2-dimensional full complex over P. Denote by βP ∈ C1(KP) the 1-chain
made of edges belonging to the boundary of CH(P). If Γmin = minvlex

{Γ ∈ C2 (KP) , ∂Γ = βP},
the simplicial complex |Γmin| support of Γmin is the Delaunay triangulation of P.

As the 2D Delaunay triangulation has some well-known optimality properties, such as maximiz-
ing the minimal angle, we can hope that using the same order to minimize 2-chains in dimension
3 will keep some of those properties. In fact, it has been shown that for a Čech or Vietoris-Rips
complex, under strict conditions linking the point set sampling, the parameter of the complex and
the reach of the underlying manifold of Euclidean space, the minimal lexicographic chain using

11

Figure 1: Watertight reconstructions under different perturbations. Under small perturbations
(first two images from the left), the reconstruction is a triangulation of the sampled manifold. A
few non-manifold configurations appear however under larger perturbations (Rightmost image).

Figure 2: Open surface triangulations under imposed boundaries (red cycles).

the described simplex order is a triangulation of the sampled manifold [15]. Experimental results
(Figure 1) show that this property remains true relatively far from these theoretical conditions.

6.2 Open surface triangulation
Using the Phat library [5], we generate a Čech complex of the point cloud and the points of a
provided cycle, with a sufficient parameter to capture the topology of the object [9, 4]. After
constructing the 2-boundary, we apply the boundary reduction algorithm, slightly modified to
calculate as well the transformation matrix V . We then apply Algorithm 4, and in the case the
cycle is a boundary, we get a chain bounded by the provided cycle. We then apply Algorithm 3
to minimize the chain under imposed boundary. Figure 2 shows results of this method.

6.3 Closed surface triangulation
Using Algorithm 5 requires a strongly connected 3-pseudomanifold: we therefore use a 3D Delau-
nay triangulation, for its efficiency and non-parametric nature, using the CGAL library [26], and
complete it into a 3-sphere by connecting, for any triangle on the convex hull of the Delaunay
triangulation, its dual edge to an "infinite" dual vertex.

Experimentally, sorting triangles does not require exact predicates: the RB and RC quantities
can simply be calculated in fixed precision. The quasilinear complexity of Algorithm 5 makes it
competitive in large point cloud applications (Figure 3). Outliers are naturally ignored and, being
parameter free, the algorithm adapts to non uniform point densities.

The choice of α1 and α2 defines the location of the closed separating surface. We can guide the
algorithm by interactively adding multiple α1 and α2 regions as depicted in Figure 4. Algorithm
5 requires to be slightly modified to take as input multiple α1, α2: after creating all sets with
MakeSet, we need to combine all α1 sets together, and all α2 sets together. The algorithm
remains unchanged for the rest.

12

Figure 3: Closed surface triangulation of 440K points in 7.33 seconds. Beside the point cloud, the
only user input is one inner tetrahedron.

IN

OUT

IN

OUT

OUT

Figure 4: Providing additional topological information can improve the result of the reconstruc-
tion. Here the lexicographic order on 1-chains is induced by edge length comparison.

13

References
[1] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational

tetrahedral meshing. ACM Trans. Graph., 24(3):617–625, 2005. URL: https://doi.org/
10.1145/1073204.1073238, doi:10.1145/1073204.1073238.

[2] Nina Amenta, Marshall W. Bern, and Manolis Kamvysselis. A new voronoi-based sur-
face reconstruction algorithm. In Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-
24, 1998, pages 415–421, 1998. URL: https://doi.org/10.1145/280814.280947, doi:
10.1145/280814.280947.

[3] Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha. A simple algorithm for home-
omorphic surface reconstruction. Int. J. Comput. Geometry Appl., 12(1-2):125–141, 2002.
URL: https://doi.org/10.1142/S0218195902000773, doi:10.1142/S0218195902000773.

[4] Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide
topologically correct reconstructions of sampled shapes. Comput. Geom., 46(4):448–465,
2013. URL: https://doi.org/10.1016/j.comgeo.2012.02.009, doi:10.1016/j.comgeo.
2012.02.009.

[5] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat – persistent
homology algorithms toolbox. Journal of Symbolic Computation, 78:76 – 90, 2017. Algorithms
and Software for Computational Topology. doi:10.1016/j.jsc.2016.03.008.

[6] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representation.
ACM Trans. Graph., 3(4):266–286, 1984. URL: https://doi.org/10.1145/357346.357349,
doi:10.1145/357346.357349.

[7] Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natu-
ral neighbour interpolation of distance functions. In Proceedings of the Sixteenth Annual
Symposium on Computational Geometry, Clear Water Bay, Hong Kong, China, June 12-
14, 2000, pages 223–232, 2000. URL: https://doi.org/10.1145/336154.336208, doi:
10.1145/336154.336208.

[8] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homol-
ogous cycles. In Proceedings of the 25th ACM Symposium on Computational Geometry,
Aarhus, Denmark, June 8-10, 2009, pages 377–385, 2009. URL: https://doi.org/10.1145/
1542362.1542426, doi:10.1145/1542362.1542426.

[9] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in euclidean space. Discrete & Computational Geometry, 41(3):461–479, 2009. URL:
https://doi.org/10.1007/s00454-009-9144-8, doi:10.1007/s00454-009-9144-8.

[10] Chao Chen and Daniel Freedman. Quantifying homology classes. CoRR, abs/0802.2865,
2008. arXiv:0802.2865.

[11] Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology
groups. Comput. Geom., 43(2):169–181, 2010. URL: https://doi.org/10.1016/j.comgeo.
2009.06.004, doi:10.1016/j.comgeo.2009.06.004.

[12] Chao Chen and Daniel Freedman. Hardness results for homology localization. Dis-
crete & Computational Geometry, 45(3):425–448, 2011. URL: https://doi.org/10.1007/
s00454-010-9322-8, doi:10.1007/s00454-010-9322-8.

[13] Long Chen. Mesh smoothing schemes based on optimal delaunay triangulations. In Pro-
ceedings of the 13th International Meshing Roundtable, IMR 2004, Williamsburg, Virginia,
USA, September 19-22, 2004, pages 109–120, 2004. URL: http://imr.sandia.gov/papers/
abstracts/Ch317.html.

14

https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/1073204.1073238
http://dx.doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/280814.280947
http://dx.doi.org/10.1145/280814.280947
http://dx.doi.org/10.1145/280814.280947
https://doi.org/10.1142/S0218195902000773
http://dx.doi.org/10.1142/S0218195902000773
https://doi.org/10.1016/j.comgeo.2012.02.009
http://dx.doi.org/10.1016/j.comgeo.2012.02.009
http://dx.doi.org/10.1016/j.comgeo.2012.02.009
http://dx.doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1145/357346.357349
http://dx.doi.org/10.1145/357346.357349
https://doi.org/10.1145/336154.336208
http://dx.doi.org/10.1145/336154.336208
http://dx.doi.org/10.1145/336154.336208
https://doi.org/10.1145/1542362.1542426
https://doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1145/1542362.1542426
https://doi.org/10.1007/s00454-009-9144-8
http://dx.doi.org/10.1007/s00454-009-9144-8
http://arxiv.org/abs/0802.2865
https://doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1016/j.comgeo.2009.06.004
http://dx.doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1007/s00454-010-9322-8
https://doi.org/10.1007/s00454-010-9322-8
http://dx.doi.org/10.1007/s00454-010-9322-8
http://imr.sandia.gov/papers/abstracts/Ch317.html
http://imr.sandia.gov/papers/abstracts/Ch317.html

[14] Long Chen and Michael Holst. Efficient mesh optimization schemes based on optimal delaunay
triangulations. Computer Methods in Applied Mechanics and Engineering, 200(9):967–984,
2011. doi:https://doi.org/10.1016/j.cma.2010.11.007.

[15] David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic optimal chains and
manifold triangulations. 2019.

[16] David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Regular triangulations as lexico-
graphic optimal chains. 2019.

[17] Tamal K. Dey and Samrat Goswami. Tight cocone: A water-tight surface reconstructor. J.
Comput. Inf. Sci. Eng., 3(4):302–307, 2003.

[18] Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total
unimodularity, and linear programming. SIAM J. Comput., 40(4):1026–1044, 2011. URL:
https://doi.org/10.1137/100800245, doi:10.1137/100800245.

[19] Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Poly-
nomial and hard cases. CoRR, abs/1907.04889, 2019. URL: http://arxiv.org/abs/1907.
04889, arXiv:1907.04889.

[20] Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis
from point data. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings
of the 26th ACM Symposium on Computational Geometry, Snowbird, Utah, USA, June 13-
16, 2010, pages 166–175. ACM, 2010. URL: https://doi.org/10.1145/1810959.1810989,
doi:10.1145/1810959.1810989.

[21] Herbert Edelsbrunner. Surface Reconstruction by Wrapping Finite Sets in Space, pages 379–
404. Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-55566-4_17.

[22] Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. Amer-
ican Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=
MBK-69.

[23] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, 1972. URL: https://doi.org/10.1145/
321694.321699, doi:10.1145/321694.321699.

[24] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 1038–1046, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070581.

[25] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun.
ACM, 7(5):301–303, 1964. URL: https://doi.org/10.1145/364099.364331, doi:10.1145/
364099.364331.

[26] Clément Jamin, Sylvain Pion, and Monique Teillaud. 3D triangulations. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/
5.0/Manual/packages.html#PkgTriangulation3.

[27] Michael M. Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM
Trans. Graph., 32(3):29:1–29:13, 2013. URL: https://doi.org/10.1145/2487228.2487237,
doi:10.1145/2487228.2487237.

[28] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. Robust and efficient surface
reconstruction from range data. Comput. Graph. Forum, 28(8):2275–2290, 2009. doi:10.
1111/j.1467-8659.2009.01530.x.

[29] Sylvain Lefebvre and Michela Spagnuolo, editors. Eurographics 2014 - State of the Art
Reports, Strasbourg, France, April 7-11, 2014. Eurographics Association, 2014. URL:
https://diglib.eg.org/handle/10.2312/7707.

15

http://dx.doi.org/https://doi.org/10.1016/j.cma.2010.11.007
https://doi.org/10.1137/100800245
http://dx.doi.org/10.1137/100800245
http://arxiv.org/abs/1907.04889
http://arxiv.org/abs/1907.04889
http://arxiv.org/abs/1907.04889
https://doi.org/10.1145/1810959.1810989
http://dx.doi.org/10.1145/1810959.1810989
http://dx.doi.org/10.1007/978-3-642-55566-4_17
http://www.ams.org/bookstore-getitem/item=MBK-69
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
http://dx.doi.org/10.1145/321694.321699
http://dl.acm.org/citation.cfm?id=1070432.1070581
https://doi.org/10.1145/364099.364331
http://dx.doi.org/10.1145/364099.364331
http://dx.doi.org/10.1145/364099.364331
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation3
https://doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1111/j.1467-8659.2009.01530.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01530.x
https://diglib.eg.org/handle/10.2312/7707

[30] Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, and Niloy J.
Mitra. Globfit: consistently fitting primitives by discovering global relations. ACM Trans.
Graph., 30(4):52, 2011. URL: https://doi.org/10.1145/2010324.1964947, doi:10.1145/
2010324.1964947.

[31] James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765–774, 2013. URL:
https://doi.org/10.1145/2488608.2488705, doi:10.1145/2488608.2488705.

[32] Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984. URL: https://doi.org/10.1145/62.2160, doi:10.1145/62.
2160.

16

https://doi.org/10.1145/2010324.1964947
http://dx.doi.org/10.1145/2010324.1964947
http://dx.doi.org/10.1145/2010324.1964947
https://doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/62.2160
http://dx.doi.org/10.1145/62.2160
http://dx.doi.org/10.1145/62.2160

	Introduction
	Definitions
	Simplicial complexes
	Simplicial chains.
	Boundary operator.
	Lexicographic order.

	Lexicographic optimal homologous chain
	Problem statement
	Boundary matrix reduction
	Total reduction algorithm

	Lexicographic-minimal chain under imposed boundary
	Problem statement
	Boundary reduction transformation matrix
	Total reduction with imposed boundary
	Finding a representative of BA

	Efficient algorithm for codimension 1 (dual graph)
	Problem statement
	Codimension 1 and Lexicographic Min Cut (LMC)
	Algorithm for Lexicographic Min Cut

	Application to point cloud triangulation
	Simplicial ordering
	Open surface triangulation
	Closed surface triangulation

