532 research outputs found

    Bone morphogenetic protein-5 (BMP-5) promotes dendritic growth in cultured sympathetic neurons

    Get PDF
    BACKGROUND: BMP-5 is expressed in the nervous system throughout development and into adulthood. However its effects on neural tissues are not well defined. BMP-5 is a member of the 60A subgroup of BMPs, other members of which have been shown to stimulate dendritic growth in central and peripheral neurons. We therefore examined the possibility that BMP-5 similarly enhances dendritic growth in cultured sympathetic neurons. RESULTS: Sympathetic neurons cultured in the absence of serum or glial cells do not form dendrites; however, addition of BMP-5 causes these neurons to extend multiple dendritic processes, which is preceded by an increase in phosphorylation of the Smad-1 transcription factor. The dendrite-promoting activity of BMP-5 is significantly inhibited by the BMP antagonists noggin and follistatin and by a BMPR-IA-Fc chimeric protein. RT-PCR and immunocytochemical analyses indicate that BMP-5 mRNA and protein are expressed in the superior cervical ganglia (SCG) during times of initial growth and rapid expansion of the dendritic arbor. CONCLUSIONS: These data suggest a role for BMP-5 in regulating dendritic growth in sympathetic neurons. The signaling pathway that mediates the dendrite-promoting activity of BMP-5 may involve binding to BMPR-IA and activation of Smad-1, and relative levels of BMP antagonists such as noggin and follistatin may modulate BMP-5 signaling. Since BMP-5 is expressed at relatively high levels not only in the developing but also the adult nervous system, these findings suggest the possibility that BMP-5 regulates dendritic morphology not only in the developing, but also the adult nervous system

    Ariel - Volume 4 Number 7

    Get PDF
    Editors David Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler J.D. Kanofsky David Mayer Rocket Webe

    Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs.

    Get PDF
    Organophosphorus pesticides (OPs) are implicated in human asthma. We previously demonstrated that, at concentrations that do not inhibit acetylcholinesterase activity, the OP parathion causes airway hyperreactivity in guinea pigs as a result of functional loss of inhibitory M2 muscarinic receptors on parasympathetic nerves. Because macrophages are associated with asthma, we investigated whether macrophages mediate parathion-induced M2 receptor dysfunction and airway hyperreactivity. Airway physiology was measured in guinea pigs 24 h after a subcutaneous injection of parathion. Pretreatment with liposome-encapsulated clodronate induced alveolar macrophage apoptosis and prevented parathion-induced airway hyperreactivity in response to electrical stimulation of the vagus nerves. As determined by qPCR, TNF-α and IL-1β mRNA levels were increased in alveolar macrophages isolated from parathion-treated guinea pigs. Parathion treatment of alveolar macrophages ex vivo did not significantly increase IL-1β and TNF-α mRNA but did significantly increase TNF-α protein release. Consistent with these data, pretreatment with the TNF-α inhibitor etanercept but not the IL-1β receptor inhibitor anakinra prevented parathion-induced airway hyperreactivity and protected M2 receptor function. These data suggest a novel mechanism of OP-induced airway hyperreactivity in which low-level parathion activates macrophages to release TNF-α-causing M2 receptor dysfunction and airway hyperreactivity. These observations have important implications regarding therapeutic approaches for treating respiratory disease associated with OP exposures

    Preformed CD40L Is Stored in Th1, Th2, Th17, and T Follicular Helper Cells as Well as CD4+8− Thymocytes and Invariant NKT Cells but Not in Treg Cells

    Get PDF
    CD40L is essential for the development of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, imaging studies show that the majority of cognate interactions between effector CD4+ T cells and APCs in vivo are too short to allow de novo CD40L synthesis. We previously showed that Th1 effector and memory cells store preformed CD40L (pCD40L) in lysosomal compartments and mobilize it onto the plasma membrane immediately after antigenic stimulation, suggesting that primed CD4+ T cells may use pCD40L to activate APCs during brief encounters. Indeed, our recent study showed that pCD40L is sufficient to mediate selective activation of cognate B cells and trigger DC activation in vitro. In this study, we show that pCD40L is present in Th1 and follicular helper T cells developed during infection with lymphocytic choriomeningitis virus, Th2 cells in the airway of asthmatic mice, and Th17 cells from the CNS of animals with experimental autoimmune encephalitis (EAE). pCD40L is nearly absent in both natural and induced Treg cells, even in the presence of intense inflammation such as occurs in EAE. We also found pCD40L expression in CD4 single positive thymocytes and invariant NKT cells. Together, these results suggest that pCD40L may function in T cell development as well as an unexpectedly broad spectrum of innate and adaptive immune responses, while its expression in Treg cells is repressed to avoid compromising their suppressive activity

    Regulating the automobile

    Get PDF
    Division of Policy Research and Analysis. National Science Foundatio

    Understanding Persistent Non-compliance in a Remote, Large-Scale Marine Protected Area

    Get PDF
    UIDB/04647/2020 UIDP/04647/2020Area coverage of large-scale marine protected areas (MPAs) (LSMPAs, > 100,000 km2) is rapidly increasing globally. Their effectiveness largely depends on successful detection and management of non-compliance. However, for LSMPAs this can be difficult due to their large size, often remote locations and a lack of understanding of the social drivers of non-compliance. Taking a case-study approach, we review current knowledge of illegal fishing within the British Indian Ocean Territory (BIOT) LSMPA. Data stemming from enforcement reports (2010–20), and from fieldwork in fishing communities (2018–19) were combined to explore and characterise drivers of non-compliance. Enforcement data included vessel investigation reports (n = 188), transcripts of arrests (20) and catch seizures (58). Fieldwork data included fisher interviews (95) and focus groups (12), conducted in two communities in Sri Lanka previously associated with non-compliance in BIOT LSMPA. From 2010 to 2020, there were 126 vessels suspected of non-compliance, 76% of which were Sri Lankan. The majority of non-compliant vessels targeted sharks (97%), catching an estimated 14,340 individuals during the study period. Sri Lankan vessels were primarily registered to one district (77%) and 85% operated from just two ports within the fieldwork sites. Social Network Analysis (SNA) showed that 66% of non-compliant vessels were linked by social ties, including sharing crew members, compared with only 34% of compliant vessels. Thematic analysis of qualitative data suggested that perceptions of higher populations of sharks and social ties between vessels may both be important drivers. We discuss our findings within a global context to identify potential solutions for LSMPA management.publishersversionpublishe
    • …
    corecore